|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "attachments": {}, |
| 5 | + "cell_type": "markdown", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "Copyright (c) MONAI Consortium \n", |
| 9 | + "Licensed under the Apache License, Version 2.0 (the \"License\"); \n", |
| 10 | + "you may not use this file except in compliance with the License. \n", |
| 11 | + "You may obtain a copy of the License at \n", |
| 12 | + " http://www.apache.org/licenses/LICENSE-2.0 \n", |
| 13 | + "Unless required by applicable law or agreed to in writing, software \n", |
| 14 | + "distributed under the License is distributed on an \"AS IS\" BASIS, \n", |
| 15 | + "WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. \n", |
| 16 | + "See the License for the specific language governing permissions and \n", |
| 17 | + "limitations under the License.\n", |
| 18 | + "\n", |
| 19 | + "# MONAI 201 tutorial\n", |
| 20 | + "\n", |
| 21 | + "In this tutorial we'll revisit the [MONAI 101 notebook](https://github.com/Project-MONAI/tutorials/blob/main/2d_classification/monai_101.ipynb) and add more features representing best practice concepts. This will include evaluation and tensorboard handler techniques.\n", |
| 22 | + "\n", |
| 23 | + "These steps will be included in this tutorial, and each of them will take only a few lines of code:\n", |
| 24 | + "- Dataset download and Data pre-processing\n", |
| 25 | + "- Define a DenseNet-121 and run training\n", |
| 26 | + "- Run inference using SupervisedEvaluator\n", |
| 27 | + "\n", |
| 28 | + "This tutorial will use about 7GB of GPU memory and 10 minutes to run.\n", |
| 29 | + "\n", |
| 30 | + "[](https://colab.research.google.com/github/Project-MONAI/tutorials/blob/main/2d_classification/monai_201.ipynb)" |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "markdown", |
| 35 | + "metadata": {}, |
| 36 | + "source": [ |
| 37 | + "## Setup environment" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "code", |
| 42 | + "execution_count": 10, |
| 43 | + "metadata": {}, |
| 44 | + "outputs": [], |
| 45 | + "source": [ |
| 46 | + "!python -c \"import monai\" || pip install -q \"monai-weekly[ignite, tqdm, tensorboard]\"" |
| 47 | + ] |
| 48 | + }, |
| 49 | + { |
| 50 | + "attachments": {}, |
| 51 | + "cell_type": "markdown", |
| 52 | + "metadata": {}, |
| 53 | + "source": [ |
| 54 | + "## Setup imports" |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "code", |
| 59 | + "execution_count": null, |
| 60 | + "metadata": {}, |
| 61 | + "outputs": [], |
| 62 | + "source": [ |
| 63 | + "import logging\n", |
| 64 | + "import numpy as np\n", |
| 65 | + "import os\n", |
| 66 | + "from pathlib import Path\n", |
| 67 | + "import sys\n", |
| 68 | + "import tempfile\n", |
| 69 | + "import torch\n", |
| 70 | + "import ignite\n", |
| 71 | + "\n", |
| 72 | + "from monai.apps import MedNISTDataset\n", |
| 73 | + "from monai.config import print_config\n", |
| 74 | + "from monai.data import DataLoader\n", |
| 75 | + "from monai.engines import SupervisedTrainer, SupervisedEvaluator\n", |
| 76 | + "from monai.handlers import (\n", |
| 77 | + " StatsHandler,\n", |
| 78 | + " TensorBoardStatsHandler,\n", |
| 79 | + " ValidationHandler,\n", |
| 80 | + " CheckpointSaver,\n", |
| 81 | + " CheckpointLoader,\n", |
| 82 | + " ClassificationSaver,\n", |
| 83 | + ")\n", |
| 84 | + "from monai.handlers.utils import from_engine\n", |
| 85 | + "from monai.inferers import SimpleInferer\n", |
| 86 | + "from monai.networks.nets import densenet121\n", |
| 87 | + "from monai.transforms import LoadImageD, EnsureChannelFirstD, ScaleIntensityD, Compose, AsDiscreted\n", |
| 88 | + "\n", |
| 89 | + "print_config()" |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "attachments": {}, |
| 94 | + "cell_type": "markdown", |
| 95 | + "metadata": {}, |
| 96 | + "source": [ |
| 97 | + "## Setup data directory\n", |
| 98 | + "\n", |
| 99 | + "You can specify a directory with the `MONAI_DATA_DIRECTORY` environment variable. \n", |
| 100 | + "This allows you to save results and reuse downloads. \n", |
| 101 | + "If not specified a temporary directory will be used." |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "code", |
| 106 | + "execution_count": 12, |
| 107 | + "metadata": {}, |
| 108 | + "outputs": [ |
| 109 | + { |
| 110 | + "name": "stdout", |
| 111 | + "output_type": "stream", |
| 112 | + "text": [ |
| 113 | + "/workspace/Data\n" |
| 114 | + ] |
| 115 | + } |
| 116 | + ], |
| 117 | + "source": [ |
| 118 | + "directory = os.environ.get(\"MONAI_DATA_DIRECTORY\")\n", |
| 119 | + "root_dir = tempfile.mkdtemp() if directory is None else directory\n", |
| 120 | + "print(root_dir)" |
| 121 | + ] |
| 122 | + }, |
| 123 | + { |
| 124 | + "attachments": {}, |
| 125 | + "cell_type": "markdown", |
| 126 | + "metadata": {}, |
| 127 | + "source": [ |
| 128 | + "## Use MONAI transforms to preprocess data\n", |
| 129 | + "\n", |
| 130 | + "We'll first prepare the data very much like in the previous tutorial with the same transforms and dataset:" |
| 131 | + ] |
| 132 | + }, |
| 133 | + { |
| 134 | + "cell_type": "code", |
| 135 | + "execution_count": 13, |
| 136 | + "metadata": {}, |
| 137 | + "outputs": [ |
| 138 | + { |
| 139 | + "name": "stdout", |
| 140 | + "output_type": "stream", |
| 141 | + "text": [ |
| 142 | + "2024-02-27 08:31:31,955 - INFO - Verified 'MedNIST.tar.gz', md5: 0bc7306e7427e00ad1c5526a6677552d.\n", |
| 143 | + "2024-02-27 08:31:31,955 - INFO - File exists: /workspace/Data/MedNIST.tar.gz, skipped downloading.\n", |
| 144 | + "2024-02-27 08:31:31,956 - INFO - Non-empty folder exists in /workspace/Data/MedNIST, skipped extracting.\n" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "name": "stderr", |
| 149 | + "output_type": "stream", |
| 150 | + "text": [ |
| 151 | + "Loading dataset: 0%| | 0/47164 [00:00<?, ?it/s]" |
| 152 | + ] |
| 153 | + }, |
| 154 | + { |
| 155 | + "name": "stderr", |
| 156 | + "output_type": "stream", |
| 157 | + "text": [ |
| 158 | + "Loading dataset: 100%|██████████| 47164/47164 [00:19<00:00, 2393.21it/s]\n", |
| 159 | + "Loading dataset: 100%|██████████| 5895/5895 [00:02<00:00, 2465.05it/s]\n" |
| 160 | + ] |
| 161 | + } |
| 162 | + ], |
| 163 | + "source": [ |
| 164 | + "transform = Compose(\n", |
| 165 | + " [\n", |
| 166 | + " LoadImageD(keys=\"image\", image_only=True),\n", |
| 167 | + " EnsureChannelFirstD(keys=\"image\"),\n", |
| 168 | + " ScaleIntensityD(keys=\"image\"),\n", |
| 169 | + " ]\n", |
| 170 | + ")\n", |
| 171 | + "\n", |
| 172 | + "# If you use the MedNIST dataset, please acknowledge the source.\n", |
| 173 | + "dataset = MedNISTDataset(root_dir=root_dir, transform=transform, section=\"training\", download=True)\n", |
| 174 | + "valdata = MedNISTDataset(root_dir=root_dir, transform=transform, section=\"validation\", download=False)" |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "markdown", |
| 179 | + "metadata": {}, |
| 180 | + "source": [ |
| 181 | + "## Define a network and a supervised trainer\n", |
| 182 | + "\n", |
| 183 | + "For training we have the same elements again and will slightly change the `SupervisedTrainer` by expanding its train_handlers. This upgrade will be beneficial for efficient utilization of TensorBoard.\n", |
| 184 | + "Furthermore, we introduce a `SupervisedEvaluator` object that will efficiently track model progress. Accompanied by `TensorBoardStatsHandler`, it will log statistics for TensorBoard, ensuring precise tracking and management." |
| 185 | + ] |
| 186 | + }, |
| 187 | + { |
| 188 | + "cell_type": "code", |
| 189 | + "execution_count": 14, |
| 190 | + "metadata": {}, |
| 191 | + "outputs": [], |
| 192 | + "source": [ |
| 193 | + "max_epochs = 5\n", |
| 194 | + "save_interval = 2\n", |
| 195 | + "out_dir = \"./eval\"\n", |
| 196 | + "model = densenet121(spatial_dims=2, in_channels=1, out_channels=6).to(\"cuda:0\")\n", |
| 197 | + "\n", |
| 198 | + "logging.basicConfig(stream=sys.stdout, level=logging.INFO)\n", |
| 199 | + "\n", |
| 200 | + "evaluator = SupervisedEvaluator(\n", |
| 201 | + " device=torch.device(\"cuda:0\"),\n", |
| 202 | + " val_data_loader=DataLoader(valdata, batch_size=512, shuffle=False, num_workers=4),\n", |
| 203 | + " network=model,\n", |
| 204 | + " inferer=SimpleInferer(),\n", |
| 205 | + " key_val_metric={\"val_acc\": ignite.metrics.Accuracy(from_engine([\"pred\", \"label\"]))},\n", |
| 206 | + " val_handlers=[StatsHandler(iteration_log=False), TensorBoardStatsHandler(iteration_log=False)],\n", |
| 207 | + ")\n", |
| 208 | + "\n", |
| 209 | + "trainer = SupervisedTrainer(\n", |
| 210 | + " device=torch.device(\"cuda:0\"),\n", |
| 211 | + " max_epochs=max_epochs,\n", |
| 212 | + " train_data_loader=DataLoader(dataset, batch_size=512, shuffle=True, num_workers=4),\n", |
| 213 | + " network=model,\n", |
| 214 | + " optimizer=torch.optim.Adam(model.parameters(), lr=1e-5),\n", |
| 215 | + " loss_function=torch.nn.CrossEntropyLoss(),\n", |
| 216 | + " inferer=SimpleInferer(),\n", |
| 217 | + " train_handlers=[\n", |
| 218 | + " ValidationHandler(validator=evaluator, epoch_level=True, interval=1),\n", |
| 219 | + " CheckpointSaver(\n", |
| 220 | + " save_dir=out_dir,\n", |
| 221 | + " save_dict={\"model\": model},\n", |
| 222 | + " save_interval=save_interval,\n", |
| 223 | + " save_final=True,\n", |
| 224 | + " final_filename=\"checkpoint.pt\",\n", |
| 225 | + " ),\n", |
| 226 | + " StatsHandler(),\n", |
| 227 | + " TensorBoardStatsHandler(tag_name=\"train_loss\", output_transform=from_engine([\"loss\"], first=True)),\n", |
| 228 | + " ],\n", |
| 229 | + ")" |
| 230 | + ] |
| 231 | + }, |
| 232 | + { |
| 233 | + "attachments": {}, |
| 234 | + "cell_type": "markdown", |
| 235 | + "metadata": {}, |
| 236 | + "source": [ |
| 237 | + "## Run the training" |
| 238 | + ] |
| 239 | + }, |
| 240 | + { |
| 241 | + "cell_type": "code", |
| 242 | + "execution_count": null, |
| 243 | + "metadata": {}, |
| 244 | + "outputs": [], |
| 245 | + "source": [ |
| 246 | + "trainer.run()" |
| 247 | + ] |
| 248 | + }, |
| 249 | + { |
| 250 | + "cell_type": "markdown", |
| 251 | + "metadata": {}, |
| 252 | + "source": [ |
| 253 | + "## View training in tensorboard\n", |
| 254 | + "\n", |
| 255 | + "Please uncomment the following cell to load tensorboard results." |
| 256 | + ] |
| 257 | + }, |
| 258 | + { |
| 259 | + "cell_type": "code", |
| 260 | + "execution_count": 2, |
| 261 | + "metadata": {}, |
| 262 | + "outputs": [], |
| 263 | + "source": [ |
| 264 | + "# %load_ext tensorboard\n", |
| 265 | + "# %tensorboard --logdir ./runs" |
| 266 | + ] |
| 267 | + }, |
| 268 | + { |
| 269 | + "cell_type": "markdown", |
| 270 | + "metadata": {}, |
| 271 | + "source": [ |
| 272 | + "## Inference\n", |
| 273 | + "\n", |
| 274 | + "First thing to do is to prepare the test dataset:" |
| 275 | + ] |
| 276 | + }, |
| 277 | + { |
| 278 | + "cell_type": "code", |
| 279 | + "execution_count": 6, |
| 280 | + "metadata": {}, |
| 281 | + "outputs": [], |
| 282 | + "source": [ |
| 283 | + "dataset_dir = Path(root_dir, \"MedNIST\")\n", |
| 284 | + "class_names = sorted(f\"{x.name}\" for x in dataset_dir.iterdir() if x.is_dir())\n", |
| 285 | + "testdata = MedNISTDataset(root_dir=root_dir, transform=transform, section=\"test\", download=False, runtime_cache=True)" |
| 286 | + ] |
| 287 | + }, |
| 288 | + { |
| 289 | + "attachments": {}, |
| 290 | + "cell_type": "markdown", |
| 291 | + "metadata": {}, |
| 292 | + "source": [ |
| 293 | + "Next, we're going to establish a `SupervisedEvaluator`. This evaluator will process all the files in the specified directory and persist the results into a CSV file. Validation handlers (val_handlers) will be utilized to load the checkpoint file, providing an error if any file is unavailable, and they will also save the classification outcomes." |
| 294 | + ] |
| 295 | + }, |
| 296 | + { |
| 297 | + "cell_type": "code", |
| 298 | + "execution_count": 10, |
| 299 | + "metadata": {}, |
| 300 | + "outputs": [ |
| 301 | + { |
| 302 | + "name": "stdout", |
| 303 | + "output_type": "stream", |
| 304 | + "text": [ |
| 305 | + "INFO:ignite.engine.engine.SupervisedEvaluator:Engine run resuming from iteration 0, epoch 0 until 1 epochs\n", |
| 306 | + "INFO:ignite.engine.engine.SupervisedEvaluator:Restored all variables from ./eval/checkpoint.pt\n", |
| 307 | + "INFO:ignite.engine.engine.SupervisedEvaluator:Epoch[1] Complete. Time taken: 00:01:24.338\n", |
| 308 | + "INFO:ignite.engine.engine.SupervisedEvaluator:Engine run complete. Time taken: 00:01:24.390\n" |
| 309 | + ] |
| 310 | + } |
| 311 | + ], |
| 312 | + "source": [ |
| 313 | + "evaluator = SupervisedEvaluator(\n", |
| 314 | + " device=torch.device(\"cuda:0\"),\n", |
| 315 | + " val_data_loader=DataLoader(testdata, batch_size=1, num_workers=0),\n", |
| 316 | + " network=model,\n", |
| 317 | + " inferer=SimpleInferer(),\n", |
| 318 | + " postprocessing=AsDiscreted(keys=\"pred\", argmax=True),\n", |
| 319 | + " val_handlers=[\n", |
| 320 | + " CheckpointLoader(load_path=f\"{out_dir}/checkpoint.pt\", load_dict={\"model\": model}),\n", |
| 321 | + " ClassificationSaver(\n", |
| 322 | + " batch_transform=lambda batch: batch[0][\"image\"].meta, output_transform=from_engine([\"pred\"])\n", |
| 323 | + " ),\n", |
| 324 | + " ],\n", |
| 325 | + ")\n", |
| 326 | + "\n", |
| 327 | + "evaluator.run()" |
| 328 | + ] |
| 329 | + }, |
| 330 | + { |
| 331 | + "cell_type": "markdown", |
| 332 | + "metadata": {}, |
| 333 | + "source": [ |
| 334 | + "By default, the inference results are stored in a file named \"predictions.csv\". However, this output filename can be customized within the `ClassificationSaver` handler, according to your preferences.\n", |
| 335 | + "Upon examining the output, one can note that the second column corresponds to the predicted class. A more discernable interpretation can be achieved by using these values as indices mapped to our predefined list of class names." |
| 336 | + ] |
| 337 | + }, |
| 338 | + { |
| 339 | + "cell_type": "code", |
| 340 | + "execution_count": 12, |
| 341 | + "metadata": {}, |
| 342 | + "outputs": [ |
| 343 | + { |
| 344 | + "name": "stdout", |
| 345 | + "output_type": "stream", |
| 346 | + "text": [ |
| 347 | + "/workspace/Data/MedNIST/AbdomenCT/006070.jpeg AbdomenCT\n", |
| 348 | + "/workspace/Data/MedNIST/BreastMRI/006574.jpeg BreastMRI\n", |
| 349 | + "/workspace/Data/MedNIST/ChestCT/009858.jpeg ChestCT\n", |
| 350 | + "/workspace/Data/MedNIST/CXR/007398.jpeg CXR\n", |
| 351 | + "/workspace/Data/MedNIST/Hand/005663.jpeg Hand\n", |
| 352 | + "/workspace/Data/MedNIST/HeadCT/006896.jpeg HeadCT\n", |
| 353 | + "/workspace/Data/MedNIST/HeadCT/007179.jpeg HeadCT\n", |
| 354 | + "/workspace/Data/MedNIST/CXR/001190.jpeg CXR\n", |
| 355 | + "/workspace/Data/MedNIST/ChestCT/005138.jpeg ChestCT\n", |
| 356 | + "/workspace/Data/MedNIST/BreastMRI/000023.jpeg BreastMRI\n" |
| 357 | + ] |
| 358 | + } |
| 359 | + ], |
| 360 | + "source": [ |
| 361 | + "max_items_to_print = 10\n", |
| 362 | + "for fn, idx in np.loadtxt(\"./predictions.csv\", delimiter=\",\", dtype=str):\n", |
| 363 | + " print(fn, class_names[int(float(idx))])\n", |
| 364 | + " max_items_to_print -= 1\n", |
| 365 | + " if max_items_to_print == 0:\n", |
| 366 | + " break" |
| 367 | + ] |
| 368 | + } |
| 369 | + ], |
| 370 | + "metadata": { |
| 371 | + "kernelspec": { |
| 372 | + "display_name": "Python 3", |
| 373 | + "language": "python", |
| 374 | + "name": "python3" |
| 375 | + }, |
| 376 | + "language_info": { |
| 377 | + "codemirror_mode": { |
| 378 | + "name": "ipython", |
| 379 | + "version": 3 |
| 380 | + }, |
| 381 | + "file_extension": ".py", |
| 382 | + "mimetype": "text/x-python", |
| 383 | + "name": "python", |
| 384 | + "nbconvert_exporter": "python", |
| 385 | + "pygments_lexer": "ipython3", |
| 386 | + "version": "3.10.12" |
| 387 | + } |
| 388 | + }, |
| 389 | + "nbformat": 4, |
| 390 | + "nbformat_minor": 2 |
| 391 | +} |
0 commit comments