Skip to content

Commit 37634b7

Browse files
authored
fixes README.md (#1106)
part of Project-MONAI/MONAI#5626 ### Description url updates ### Checks <!--- Put an `x` in all the boxes that apply, and remove the not applicable items --> - [ ] Notebook runs automatically `./runner [-p <regex_pattern>]`
1 parent 499dfdb commit 37634b7

File tree

1 file changed

+5
-6
lines changed

1 file changed

+5
-6
lines changed

README.md

Lines changed: 5 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -211,7 +211,7 @@ Demonstrates the use of the `ThreadBuffer` class used to generate data batches d
211211
Illustrate reading NIfTI files and test speed of different transforms on different devices.
212212

213213
#### <ins>**Model Zoo**</ins>
214-
##### [easy_integrate_bundle](./model_zoo/easy_integrate_bundle.py)
214+
##### [easy_integrate_bundle](./model_zoo/app_integrate_bundle)
215215
This tutorial shows a straightforward ensemble application to instruct users on how to integrate existing bundles in their own projects. By simply changing the data path and the path where the bundle is located, training and ensemble inference can be performed.
216216

217217
#### <ins>**Computer Assisted Intervention**</ins>
@@ -235,15 +235,15 @@ This notebook demonstrates the transformations on volumetric images.
235235
Tutorial that demonstrates how monai `SlidingWindowInferer` can be used when a 3D volume input needs to be provided slice-by-slice to a 2D model and finally, aggregated into a 3D volume.
236236
##### [autoencoder_mednist](./modules/autoencoder_mednist.ipynb)
237237
This tutorial uses the MedNIST hand CT scan dataset to demonstrate MONAI's autoencoder class. The autoencoder is used with an identity encode/decode (i.e., what you put in is what you should get back), as well as demonstrating its usage for de-blurring and de-noising.
238-
##### [batch_output_transform](./modules/batch_output_transform.py)
238+
##### [batch_output_transform](./modules/batch_output_transform.ipynb)
239239
Tutorial to explain and show how to set `batch_transform` and `output_transform` of handlers to work with MONAI engines.
240240
##### [compute_metric](./modules/compute_metric.py)
241241
Example shows how to compute metrics from saved predictions and labels with PyTorch multi-processing support.
242242
##### [csv_datasets](./modules/csv_datasets.ipynb)
243243
Tutorial shows the usage of `CSVDataset` and `CSVIterableDataset`, load multiple CSV files and execute postprocessing logic.
244-
##### [decollate_batch](./modules/decollate_batch.py)
244+
##### [decollate_batch](./modules/decollate_batch.ipynb)
245245
Tutorial shows how to decollate batch data to simplify post processing transforms and execute more flexible following operations.
246-
##### [image_dataset](./modules/image_dataset.py)
246+
##### [image_dataset](./modules/image_dataset.ipynb)
247247
Notebook introduces basic usages of `monai.data.ImageDataset` module.
248248
##### [dynunet_tutorial](./modules/dynunet_pipeline)
249249
This tutorial shows how to train 3D segmentation tasks on all the 10 decathlon datasets with the reimplementation of dynUNet in MONAI.
@@ -256,7 +256,7 @@ This notebook demonstrates the use of invertible transforms, and then leveraging
256256
This notebook demonstrates how to select or filter out expected network layers and set customized learning rate values.
257257
##### [learning rate finder](./modules/learning_rate.ipynb)
258258
This notebook demonstrates how to use `LearningRateFinder` API to tune the learning rate values for the network.
259-
##### [load_medical_imagesl](./modules/load_medical_images.ipynb)
259+
##### [load_medical_images](./modules/load_medical_images.ipynb)
260260
This notebook introduces how to easily load different formats of medical images in MONAI and execute many additional operations.
261261
##### [mednist_GAN_tutorial](./modules/mednist_GAN_tutorial.ipynb)
262262
This notebook illustrates the use of MONAI for training a network to generate images from a random input tensor.
@@ -279,7 +279,6 @@ This notebook shows how to quickly set up training workflow based on `MedNISTDat
279279
This notebook shows how to load the TCIA data with CSVDataset from CSV file and extract information for TCIA data to fetch DICOM images based on REST API.
280280
##### [transforms_demo_2d](./modules/transforms_demo_2d.ipynb)
281281
This notebook demonstrates the image transformations on histology images using
282-
##### [the GlaS Contest dataset](https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/download/)
283282
##### [UNet_input_size_constrains](./modules/UNet_input_size_constrains.ipynb)
284283
This tutorial shows how to determine a reasonable spatial size of the input data for MONAI UNet, which not only supports residual units, but also can use more hyperparameters (like `strides`, `kernel_size` and `up_kernel_size`) than the basic UNet implementation.
285284
##### [TorchIO, MONAI, PyTorch Lightning](./modules/TorchIO_MONAI_PyTorch_Lightning.ipynb)

0 commit comments

Comments
 (0)