|
503 | 503 | "transform_seg_available = monai.transforms.Compose(\n",
|
504 | 504 | " transforms=[\n",
|
505 | 505 | " monai.transforms.LoadImageD(keys=['img', 'seg'], image_only=True),\n",
|
506 |
| - " monai.transforms.ToTensorD(keys=['img', 'seg']),\n", |
507 | 506 | " monai.transforms.TransposeD(keys=['img', 'seg'], indices=(2, 1, 0)),\n",
|
508 |
| - " monai.transforms.AddChannelD(keys=['img', 'seg']),\n", |
| 507 | + " monai.transforms.EnsureChannelFirstD(keys=['img', 'seg']),\n", |
509 | 508 | " monai.transforms.ResizeD(\n",
|
510 | 509 | " keys=['img', 'seg'],\n",
|
511 | 510 | " spatial_size=(resize, resize, resize),\n",
|
|
740 | 739 | "transform_pair = monai.transforms.Compose(\n",
|
741 | 740 | " transforms=[\n",
|
742 | 741 | " monai.transforms.LoadImageD(keys=['img1', 'seg1', 'img2', 'seg2'], image_only=True, allow_missing_keys=True),\n",
|
743 |
| - " monai.transforms.ToTensorD(keys=['img1', 'seg1', 'img2', 'seg2'], allow_missing_keys=True),\n", |
744 | 742 | " monai.transforms.TransposeD(keys=['img1', 'seg1', 'img2', 'seg2'], indices=(2, 1, 0), allow_missing_keys=True),\n",
|
745 |
| - " monai.transforms.AddChannelD(keys=['img1', 'seg1', 'img2', 'seg2'], allow_missing_keys=True),\n", |
| 743 | + " monai.transforms.EnsureChannelFirstD(keys=['img1', 'seg1', 'img2', 'seg2'], allow_missing_keys=True),\n", |
746 | 744 | " monai.transforms.ConcatItemsD(keys=['img1', 'img2'], name='img12', dim=0),\n",
|
747 | 745 | " monai.transforms.DeleteItemsD(keys=['img1', 'img2']),\n",
|
748 | 746 | " monai.transforms.ResizeD(\n",
|
|
889 | 887 | "\n",
|
890 | 888 | "data_item = random.choice(dataset_seg_available_train)\n",
|
891 | 889 | "seg_net_example_output = seg_net(data_item['img'].unsqueeze(0))\n",
|
892 |
| - "print(f\"Segmentation classes: {torch.unique(data_item['seg'])}\")\n", |
| 890 | + "print(f\"Segmentation classes: {torch.unique(data_item['seg']).as_tensor()}\")\n", |
893 | 891 | "print(f\"Shape of ground truth label: {data_item['seg'].unsqueeze(0).shape}\")\n",
|
894 | 892 | "print(f\"Shape of seg_net output: {seg_net_example_output.shape}\")"
|
895 | 893 | ]
|
|
3037 | 3035 | "name": "python",
|
3038 | 3036 | "nbconvert_exporter": "python",
|
3039 | 3037 | "pygments_lexer": "ipython3",
|
3040 |
| - "version": "3.8.10" |
| 3038 | + "version": "3.8.13" |
3041 | 3039 | }
|
3042 | 3040 | },
|
3043 | 3041 | "nbformat": 4,
|
|
0 commit comments