|
| 1 | +import numpy as np |
| 2 | +import os |
| 3 | +import torch |
| 4 | +import glob |
| 5 | +import random |
| 6 | +from monai.data import DataLoader |
| 7 | +from monai.transforms.transform import Transform |
| 8 | +from monai.transforms import (Affine, LoadImage, Rotate, NormalizeIntensity, Transpose, Compose, Resize, AsChannelFirst, AsChannelLast, ScaleIntensity, RandFlip, Rotate90, AddChannel, GaussianSmooth, AdjustContrast) |
| 9 | +from random import shuffle |
| 10 | + |
| 11 | +class Dataset(torch.utils.data.Dataset): |
| 12 | + def __init__(self, image_file_list, transforms, shuffle_transforms=1): |
| 13 | + self.image_file_list = image_file_list |
| 14 | + if shuffle_transforms: |
| 15 | + transform_list = [LoadImage(image_only=True), AddChannel(), Resize((299, 299))] + shuffle(transforms) |
| 16 | + self.transform = Compose(transpose_list) |
| 17 | + else: |
| 18 | + self.transform = Compose([LoadImage(image_only=True), AddChannel(), Resize((299, 299))] + transforms) |
| 19 | + |
| 20 | + def __len__(self): |
| 21 | + return len(self.image_file_list) |
| 22 | + |
| 23 | + def __getitem__(self, index): |
| 24 | + return self.transform(self.image_file_list[index]) |
| 25 | + |
| 26 | + |
| 27 | +class AugmentData(object): |
| 28 | + def __init__(self, image_loading_transforms = [LoadImage(image_only=True)], augmentation_dict = {}, num_augmentations=5, output_size=(200, 200), batch_size=3): |
| 29 | + self.output_size = output_size |
| 30 | + self.batch_size = batch_size |
| 31 | + self.augmentation_dict = augmentation_dict |
| 32 | + self.aug_seq = self.create_augmentation_sequence() |
| 33 | + self.image_loading_transforms = image_loading_transforms |
| 34 | + self.num_augmentations = num_augmentations |
| 35 | + |
| 36 | + def create_augmentation_sequence(self): |
| 37 | + augmentation_transforms = [] |
| 38 | + for aug, num_aug in self.augmentation_dict.items(): |
| 39 | + _x = [aug]*num_aug |
| 40 | + augmentation_transforms = augmentation_transforms + _x |
| 41 | + return augmentation_transforms |
| 42 | + |
| 43 | + |
| 44 | + def create_transform_list(self, augmentation_sequence): |
| 45 | + transform_list = self.image_loading_transforms |
| 46 | + for _aug in augmentation_sequence: |
| 47 | + if _aug == 'rotate': |
| 48 | + transform_list.append(Rotate(random.randint(0, 100))) |
| 49 | + if _aug == 'flip': |
| 50 | + transform_list.append(RandFlip()) |
| 51 | + if _aug == 'rotate90': |
| 52 | + transform_list.append(Rotate90()) |
| 53 | + if _aug == 'intensityGaussian': |
| 54 | + transform_list.append(GaussianSmooth(sigma=random.randint(0, 10))) |
| 55 | + if _aug == 'adjustContrast': |
| 56 | + transform_list.append(AdjustContrast(gamma=random.randint(0, 10))) |
| 57 | + |
| 58 | + transform_list.append(ScaleIntensity()) |
| 59 | + transform_list.append(Resize(self.output_size)) |
| 60 | + return transform_list |
| 61 | + |
| 62 | + |
| 63 | + def create_native_transform_list(self): |
| 64 | + transform_list = Compose(self.image_loading_transforms + [ScaleIntensity(), Resize(self.output_size)]) |
| 65 | + return transform_list |
| 66 | + |
| 67 | + |
| 68 | + def __call__(self, image_file_list, *args, **kwargs): |
| 69 | + image_file_list = image_file_list |
| 70 | + |
| 71 | + IMG = [] |
| 72 | + for img in zip(image_file_list): |
| 73 | + native_transform_list = self.create_native_transform_list() |
| 74 | + native_img = native_transform_list(img) |
| 75 | + IMG = IMG + native_img |
| 76 | + for i in range(self.num_augmentations): |
| 77 | + shuffle(self.aug_seq) |
| 78 | + transform_list = self.create_transform_list(self.aug_seq) |
| 79 | + img_augmentated = Compose(transform_list)(img) |
| 80 | + IMG = IMG + img_augmentated |
| 81 | + |
| 82 | + random.shuffle(IMG) |
| 83 | + ALLIMG_NP = np.stack(IMG, axis=0) |
| 84 | + OUT_IMAGE_NP = ALLIMG_NP[0:self.batch_size, :] |
| 85 | + return OUT_IMAGE_NP |
| 86 | + |
| 87 | + |
| 88 | + |
| 89 | +def main(): |
| 90 | + |
| 91 | + image_dir='./exampleImages' |
| 92 | + image_file_list = glob.glob(image_dir + '/*.png') |
| 93 | + output_size = (400, 400) |
| 94 | + transform_list = [RandFlip(), Rotate(20), NormalizeIntensity(), Rotate90()] |
| 95 | + |
| 96 | + #print(LoadImage(image_only=True)(image_file_list[0]).shape) |
| 97 | + #train_dataset=Dataset(image_file_list, transform_list, shuffle_transforms=0) |
| 98 | + #train_dataloader = DataLoader(train_dataset, batch_size=4, num_workers=2) |
| 99 | + #for _batch_data in train_dataloader: |
| 100 | + # img = _batch_data[0] |
| 101 | + |
| 102 | + image_loading_transforms = [LoadImage(image_only=True), AddChannel()] |
| 103 | + augmentation_dict = {'rotate': 3, 'flip': 2, 'rotate90': 1, 'intensityGaussian': 2, 'adjustContrast' : 2} |
| 104 | + |
| 105 | + img = AugmentData(image_loading_transforms=image_loading_transforms, augmentation_dict = augmentation_dict)(image_file_list) |
| 106 | + print(img.shape) |
| 107 | + |
| 108 | + |
| 109 | +if __name__ == '__main__': |
| 110 | + main() |
0 commit comments