Skip to content

Commit 5c06db8

Browse files
authored
Fix ci error in unet_plusplus.ipynb (#1573)
Fixes #1572 . Clean up long text outputs. ### Checks <!--- Put an `x` in all the boxes that apply, and remove the not applicable items --> - [ ] Avoid including large-size files in the PR. - [ ] Clean up long text outputs from code cells in the notebook. - [ ] For security purposes, please check the contents and remove any sensitive info such as user names and private key. - [ ] Ensure (1) hyperlinks and markdown anchors are working (2) use relative paths for tutorial repo files (3) put figure and graphs in the `./figure` folder - [ ] Notebook runs automatically `./runner.sh -t <path to .ipynb file>` Signed-off-by: KumoLiu <[email protected]>
1 parent c9fddd1 commit 5c06db8

File tree

1 file changed

+2
-348
lines changed

1 file changed

+2
-348
lines changed

modules/network_contraints/unet_plusplus.ipynb

Lines changed: 2 additions & 348 deletions
Original file line numberDiff line numberDiff line change
@@ -117,355 +117,9 @@
117117
},
118118
{
119119
"cell_type": "code",
120-
"execution_count": 3,
120+
"execution_count": null,
121121
"metadata": {},
122-
"outputs": [
123-
{
124-
"name": "stdout",
125-
"output_type": "stream",
126-
"text": [
127-
"BasicUNetPlusPlus features: (32, 32, 64, 128, 256, 32).\n",
128-
"BasicUNetPlusPlus(\n",
129-
" (conv_0_0): TwoConv(\n",
130-
" (conv_0): Convolution(\n",
131-
" (conv): Conv3d(3, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
132-
" (adn): ADN(\n",
133-
" (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
134-
" (D): Dropout(p=0.0, inplace=False)\n",
135-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
136-
" )\n",
137-
" )\n",
138-
" (conv_1): Convolution(\n",
139-
" (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
140-
" (adn): ADN(\n",
141-
" (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
142-
" (D): Dropout(p=0.0, inplace=False)\n",
143-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
144-
" )\n",
145-
" )\n",
146-
" )\n",
147-
" (conv_1_0): Down(\n",
148-
" (max_pooling): MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
149-
" (convs): TwoConv(\n",
150-
" (conv_0): Convolution(\n",
151-
" (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
152-
" (adn): ADN(\n",
153-
" (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
154-
" (D): Dropout(p=0.0, inplace=False)\n",
155-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
156-
" )\n",
157-
" )\n",
158-
" (conv_1): Convolution(\n",
159-
" (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
160-
" (adn): ADN(\n",
161-
" (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
162-
" (D): Dropout(p=0.0, inplace=False)\n",
163-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
164-
" )\n",
165-
" )\n",
166-
" )\n",
167-
" )\n",
168-
" (conv_2_0): Down(\n",
169-
" (max_pooling): MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
170-
" (convs): TwoConv(\n",
171-
" (conv_0): Convolution(\n",
172-
" (conv): Conv3d(32, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
173-
" (adn): ADN(\n",
174-
" (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
175-
" (D): Dropout(p=0.0, inplace=False)\n",
176-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
177-
" )\n",
178-
" )\n",
179-
" (conv_1): Convolution(\n",
180-
" (conv): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
181-
" (adn): ADN(\n",
182-
" (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
183-
" (D): Dropout(p=0.0, inplace=False)\n",
184-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
185-
" )\n",
186-
" )\n",
187-
" )\n",
188-
" )\n",
189-
" (conv_3_0): Down(\n",
190-
" (max_pooling): MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
191-
" (convs): TwoConv(\n",
192-
" (conv_0): Convolution(\n",
193-
" (conv): Conv3d(64, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
194-
" (adn): ADN(\n",
195-
" (N): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
196-
" (D): Dropout(p=0.0, inplace=False)\n",
197-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
198-
" )\n",
199-
" )\n",
200-
" (conv_1): Convolution(\n",
201-
" (conv): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
202-
" (adn): ADN(\n",
203-
" (N): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
204-
" (D): Dropout(p=0.0, inplace=False)\n",
205-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
206-
" )\n",
207-
" )\n",
208-
" )\n",
209-
" )\n",
210-
" (conv_4_0): Down(\n",
211-
" (max_pooling): MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
212-
" (convs): TwoConv(\n",
213-
" (conv_0): Convolution(\n",
214-
" (conv): Conv3d(128, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
215-
" (adn): ADN(\n",
216-
" (N): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
217-
" (D): Dropout(p=0.0, inplace=False)\n",
218-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
219-
" )\n",
220-
" )\n",
221-
" (conv_1): Convolution(\n",
222-
" (conv): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
223-
" (adn): ADN(\n",
224-
" (N): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
225-
" (D): Dropout(p=0.0, inplace=False)\n",
226-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
227-
" )\n",
228-
" )\n",
229-
" )\n",
230-
" )\n",
231-
" (upcat_0_1): UpCat(\n",
232-
" (upsample): UpSample(\n",
233-
" (deconv): ConvTranspose3d(32, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n",
234-
" )\n",
235-
" (convs): TwoConv(\n",
236-
" (conv_0): Convolution(\n",
237-
" (conv): Conv3d(64, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
238-
" (adn): ADN(\n",
239-
" (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
240-
" (D): Dropout(p=0.0, inplace=False)\n",
241-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
242-
" )\n",
243-
" )\n",
244-
" (conv_1): Convolution(\n",
245-
" (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
246-
" (adn): ADN(\n",
247-
" (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
248-
" (D): Dropout(p=0.0, inplace=False)\n",
249-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
250-
" )\n",
251-
" )\n",
252-
" )\n",
253-
" )\n",
254-
" (upcat_1_1): UpCat(\n",
255-
" (upsample): UpSample(\n",
256-
" (deconv): ConvTranspose3d(64, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n",
257-
" )\n",
258-
" (convs): TwoConv(\n",
259-
" (conv_0): Convolution(\n",
260-
" (conv): Conv3d(64, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
261-
" (adn): ADN(\n",
262-
" (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
263-
" (D): Dropout(p=0.0, inplace=False)\n",
264-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
265-
" )\n",
266-
" )\n",
267-
" (conv_1): Convolution(\n",
268-
" (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
269-
" (adn): ADN(\n",
270-
" (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
271-
" (D): Dropout(p=0.0, inplace=False)\n",
272-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
273-
" )\n",
274-
" )\n",
275-
" )\n",
276-
" )\n",
277-
" (upcat_2_1): UpCat(\n",
278-
" (upsample): UpSample(\n",
279-
" (deconv): ConvTranspose3d(128, 64, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n",
280-
" )\n",
281-
" (convs): TwoConv(\n",
282-
" (conv_0): Convolution(\n",
283-
" (conv): Conv3d(128, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
284-
" (adn): ADN(\n",
285-
" (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
286-
" (D): Dropout(p=0.0, inplace=False)\n",
287-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
288-
" )\n",
289-
" )\n",
290-
" (conv_1): Convolution(\n",
291-
" (conv): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
292-
" (adn): ADN(\n",
293-
" (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
294-
" (D): Dropout(p=0.0, inplace=False)\n",
295-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
296-
" )\n",
297-
" )\n",
298-
" )\n",
299-
" )\n",
300-
" (upcat_3_1): UpCat(\n",
301-
" (upsample): UpSample(\n",
302-
" (deconv): ConvTranspose3d(256, 128, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n",
303-
" )\n",
304-
" (convs): TwoConv(\n",
305-
" (conv_0): Convolution(\n",
306-
" (conv): Conv3d(256, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
307-
" (adn): ADN(\n",
308-
" (N): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
309-
" (D): Dropout(p=0.0, inplace=False)\n",
310-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
311-
" )\n",
312-
" )\n",
313-
" (conv_1): Convolution(\n",
314-
" (conv): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
315-
" (adn): ADN(\n",
316-
" (N): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
317-
" (D): Dropout(p=0.0, inplace=False)\n",
318-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
319-
" )\n",
320-
" )\n",
321-
" )\n",
322-
" )\n",
323-
" (upcat_0_2): UpCat(\n",
324-
" (upsample): UpSample(\n",
325-
" (deconv): ConvTranspose3d(32, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n",
326-
" )\n",
327-
" (convs): TwoConv(\n",
328-
" (conv_0): Convolution(\n",
329-
" (conv): Conv3d(96, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
330-
" (adn): ADN(\n",
331-
" (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
332-
" (D): Dropout(p=0.0, inplace=False)\n",
333-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
334-
" )\n",
335-
" )\n",
336-
" (conv_1): Convolution(\n",
337-
" (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
338-
" (adn): ADN(\n",
339-
" (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
340-
" (D): Dropout(p=0.0, inplace=False)\n",
341-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
342-
" )\n",
343-
" )\n",
344-
" )\n",
345-
" )\n",
346-
" (upcat_1_2): UpCat(\n",
347-
" (upsample): UpSample(\n",
348-
" (deconv): ConvTranspose3d(64, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n",
349-
" )\n",
350-
" (convs): TwoConv(\n",
351-
" (conv_0): Convolution(\n",
352-
" (conv): Conv3d(96, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
353-
" (adn): ADN(\n",
354-
" (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
355-
" (D): Dropout(p=0.0, inplace=False)\n",
356-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
357-
" )\n",
358-
" )\n",
359-
" (conv_1): Convolution(\n",
360-
" (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
361-
" (adn): ADN(\n",
362-
" (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
363-
" (D): Dropout(p=0.0, inplace=False)\n",
364-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
365-
" )\n",
366-
" )\n",
367-
" )\n",
368-
" )\n",
369-
" (upcat_2_2): UpCat(\n",
370-
" (upsample): UpSample(\n",
371-
" (deconv): ConvTranspose3d(128, 64, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n",
372-
" )\n",
373-
" (convs): TwoConv(\n",
374-
" (conv_0): Convolution(\n",
375-
" (conv): Conv3d(192, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
376-
" (adn): ADN(\n",
377-
" (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
378-
" (D): Dropout(p=0.0, inplace=False)\n",
379-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
380-
" )\n",
381-
" )\n",
382-
" (conv_1): Convolution(\n",
383-
" (conv): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
384-
" (adn): ADN(\n",
385-
" (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
386-
" (D): Dropout(p=0.0, inplace=False)\n",
387-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
388-
" )\n",
389-
" )\n",
390-
" )\n",
391-
" )\n",
392-
" (upcat_0_3): UpCat(\n",
393-
" (upsample): UpSample(\n",
394-
" (deconv): ConvTranspose3d(32, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n",
395-
" )\n",
396-
" (convs): TwoConv(\n",
397-
" (conv_0): Convolution(\n",
398-
" (conv): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
399-
" (adn): ADN(\n",
400-
" (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
401-
" (D): Dropout(p=0.0, inplace=False)\n",
402-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
403-
" )\n",
404-
" )\n",
405-
" (conv_1): Convolution(\n",
406-
" (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
407-
" (adn): ADN(\n",
408-
" (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
409-
" (D): Dropout(p=0.0, inplace=False)\n",
410-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
411-
" )\n",
412-
" )\n",
413-
" )\n",
414-
" )\n",
415-
" (upcat_1_3): UpCat(\n",
416-
" (upsample): UpSample(\n",
417-
" (deconv): ConvTranspose3d(64, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n",
418-
" )\n",
419-
" (convs): TwoConv(\n",
420-
" (conv_0): Convolution(\n",
421-
" (conv): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
422-
" (adn): ADN(\n",
423-
" (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
424-
" (D): Dropout(p=0.0, inplace=False)\n",
425-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
426-
" )\n",
427-
" )\n",
428-
" (conv_1): Convolution(\n",
429-
" (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
430-
" (adn): ADN(\n",
431-
" (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
432-
" (D): Dropout(p=0.0, inplace=False)\n",
433-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
434-
" )\n",
435-
" )\n",
436-
" )\n",
437-
" )\n",
438-
" (upcat_0_4): UpCat(\n",
439-
" (upsample): UpSample(\n",
440-
" (deconv): ConvTranspose3d(32, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n",
441-
" )\n",
442-
" (convs): TwoConv(\n",
443-
" (conv_0): Convolution(\n",
444-
" (conv): Conv3d(160, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
445-
" (adn): ADN(\n",
446-
" (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
447-
" (D): Dropout(p=0.0, inplace=False)\n",
448-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
449-
" )\n",
450-
" )\n",
451-
" (conv_1): Convolution(\n",
452-
" (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n",
453-
" (adn): ADN(\n",
454-
" (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
455-
" (D): Dropout(p=0.0, inplace=False)\n",
456-
" (A): LeakyReLU(negative_slope=0.1, inplace=True)\n",
457-
" )\n",
458-
" )\n",
459-
" )\n",
460-
" )\n",
461-
" (final_conv_0_1): Conv3d(32, 3, kernel_size=(1, 1, 1), stride=(1, 1, 1))\n",
462-
" (final_conv_0_2): Conv3d(32, 3, kernel_size=(1, 1, 1), stride=(1, 1, 1))\n",
463-
" (final_conv_0_3): Conv3d(32, 3, kernel_size=(1, 1, 1), stride=(1, 1, 1))\n",
464-
" (final_conv_0_4): Conv3d(32, 3, kernel_size=(1, 1, 1), stride=(1, 1, 1))\n",
465-
")\n"
466-
]
467-
}
468-
],
122+
"outputs": [],
469123
"source": [
470124
"model = BasicUnetPlusPlus(\n",
471125
" spatial_dims=3,\n",

0 commit comments

Comments
 (0)