|
117 | 117 | },
|
118 | 118 | {
|
119 | 119 | "cell_type": "code",
|
120 |
| - "execution_count": 3, |
| 120 | + "execution_count": null, |
121 | 121 | "metadata": {},
|
122 |
| - "outputs": [ |
123 |
| - { |
124 |
| - "name": "stdout", |
125 |
| - "output_type": "stream", |
126 |
| - "text": [ |
127 |
| - "BasicUNetPlusPlus features: (32, 32, 64, 128, 256, 32).\n", |
128 |
| - "BasicUNetPlusPlus(\n", |
129 |
| - " (conv_0_0): TwoConv(\n", |
130 |
| - " (conv_0): Convolution(\n", |
131 |
| - " (conv): Conv3d(3, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
132 |
| - " (adn): ADN(\n", |
133 |
| - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
134 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
135 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
136 |
| - " )\n", |
137 |
| - " )\n", |
138 |
| - " (conv_1): Convolution(\n", |
139 |
| - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
140 |
| - " (adn): ADN(\n", |
141 |
| - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
142 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
143 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
144 |
| - " )\n", |
145 |
| - " )\n", |
146 |
| - " )\n", |
147 |
| - " (conv_1_0): Down(\n", |
148 |
| - " (max_pooling): MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", |
149 |
| - " (convs): TwoConv(\n", |
150 |
| - " (conv_0): Convolution(\n", |
151 |
| - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
152 |
| - " (adn): ADN(\n", |
153 |
| - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
154 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
155 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
156 |
| - " )\n", |
157 |
| - " )\n", |
158 |
| - " (conv_1): Convolution(\n", |
159 |
| - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
160 |
| - " (adn): ADN(\n", |
161 |
| - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
162 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
163 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
164 |
| - " )\n", |
165 |
| - " )\n", |
166 |
| - " )\n", |
167 |
| - " )\n", |
168 |
| - " (conv_2_0): Down(\n", |
169 |
| - " (max_pooling): MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", |
170 |
| - " (convs): TwoConv(\n", |
171 |
| - " (conv_0): Convolution(\n", |
172 |
| - " (conv): Conv3d(32, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
173 |
| - " (adn): ADN(\n", |
174 |
| - " (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
175 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
176 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
177 |
| - " )\n", |
178 |
| - " )\n", |
179 |
| - " (conv_1): Convolution(\n", |
180 |
| - " (conv): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
181 |
| - " (adn): ADN(\n", |
182 |
| - " (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
183 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
184 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
185 |
| - " )\n", |
186 |
| - " )\n", |
187 |
| - " )\n", |
188 |
| - " )\n", |
189 |
| - " (conv_3_0): Down(\n", |
190 |
| - " (max_pooling): MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", |
191 |
| - " (convs): TwoConv(\n", |
192 |
| - " (conv_0): Convolution(\n", |
193 |
| - " (conv): Conv3d(64, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
194 |
| - " (adn): ADN(\n", |
195 |
| - " (N): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
196 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
197 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
198 |
| - " )\n", |
199 |
| - " )\n", |
200 |
| - " (conv_1): Convolution(\n", |
201 |
| - " (conv): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
202 |
| - " (adn): ADN(\n", |
203 |
| - " (N): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
204 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
205 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
206 |
| - " )\n", |
207 |
| - " )\n", |
208 |
| - " )\n", |
209 |
| - " )\n", |
210 |
| - " (conv_4_0): Down(\n", |
211 |
| - " (max_pooling): MaxPool3d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)\n", |
212 |
| - " (convs): TwoConv(\n", |
213 |
| - " (conv_0): Convolution(\n", |
214 |
| - " (conv): Conv3d(128, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
215 |
| - " (adn): ADN(\n", |
216 |
| - " (N): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
217 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
218 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
219 |
| - " )\n", |
220 |
| - " )\n", |
221 |
| - " (conv_1): Convolution(\n", |
222 |
| - " (conv): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
223 |
| - " (adn): ADN(\n", |
224 |
| - " (N): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
225 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
226 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
227 |
| - " )\n", |
228 |
| - " )\n", |
229 |
| - " )\n", |
230 |
| - " )\n", |
231 |
| - " (upcat_0_1): UpCat(\n", |
232 |
| - " (upsample): UpSample(\n", |
233 |
| - " (deconv): ConvTranspose3d(32, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", |
234 |
| - " )\n", |
235 |
| - " (convs): TwoConv(\n", |
236 |
| - " (conv_0): Convolution(\n", |
237 |
| - " (conv): Conv3d(64, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
238 |
| - " (adn): ADN(\n", |
239 |
| - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
240 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
241 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
242 |
| - " )\n", |
243 |
| - " )\n", |
244 |
| - " (conv_1): Convolution(\n", |
245 |
| - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
246 |
| - " (adn): ADN(\n", |
247 |
| - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
248 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
249 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
250 |
| - " )\n", |
251 |
| - " )\n", |
252 |
| - " )\n", |
253 |
| - " )\n", |
254 |
| - " (upcat_1_1): UpCat(\n", |
255 |
| - " (upsample): UpSample(\n", |
256 |
| - " (deconv): ConvTranspose3d(64, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", |
257 |
| - " )\n", |
258 |
| - " (convs): TwoConv(\n", |
259 |
| - " (conv_0): Convolution(\n", |
260 |
| - " (conv): Conv3d(64, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
261 |
| - " (adn): ADN(\n", |
262 |
| - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
263 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
264 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
265 |
| - " )\n", |
266 |
| - " )\n", |
267 |
| - " (conv_1): Convolution(\n", |
268 |
| - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
269 |
| - " (adn): ADN(\n", |
270 |
| - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
271 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
272 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
273 |
| - " )\n", |
274 |
| - " )\n", |
275 |
| - " )\n", |
276 |
| - " )\n", |
277 |
| - " (upcat_2_1): UpCat(\n", |
278 |
| - " (upsample): UpSample(\n", |
279 |
| - " (deconv): ConvTranspose3d(128, 64, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", |
280 |
| - " )\n", |
281 |
| - " (convs): TwoConv(\n", |
282 |
| - " (conv_0): Convolution(\n", |
283 |
| - " (conv): Conv3d(128, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
284 |
| - " (adn): ADN(\n", |
285 |
| - " (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
286 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
287 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
288 |
| - " )\n", |
289 |
| - " )\n", |
290 |
| - " (conv_1): Convolution(\n", |
291 |
| - " (conv): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
292 |
| - " (adn): ADN(\n", |
293 |
| - " (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
294 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
295 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
296 |
| - " )\n", |
297 |
| - " )\n", |
298 |
| - " )\n", |
299 |
| - " )\n", |
300 |
| - " (upcat_3_1): UpCat(\n", |
301 |
| - " (upsample): UpSample(\n", |
302 |
| - " (deconv): ConvTranspose3d(256, 128, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", |
303 |
| - " )\n", |
304 |
| - " (convs): TwoConv(\n", |
305 |
| - " (conv_0): Convolution(\n", |
306 |
| - " (conv): Conv3d(256, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
307 |
| - " (adn): ADN(\n", |
308 |
| - " (N): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
309 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
310 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
311 |
| - " )\n", |
312 |
| - " )\n", |
313 |
| - " (conv_1): Convolution(\n", |
314 |
| - " (conv): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
315 |
| - " (adn): ADN(\n", |
316 |
| - " (N): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
317 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
318 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
319 |
| - " )\n", |
320 |
| - " )\n", |
321 |
| - " )\n", |
322 |
| - " )\n", |
323 |
| - " (upcat_0_2): UpCat(\n", |
324 |
| - " (upsample): UpSample(\n", |
325 |
| - " (deconv): ConvTranspose3d(32, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", |
326 |
| - " )\n", |
327 |
| - " (convs): TwoConv(\n", |
328 |
| - " (conv_0): Convolution(\n", |
329 |
| - " (conv): Conv3d(96, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
330 |
| - " (adn): ADN(\n", |
331 |
| - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
332 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
333 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
334 |
| - " )\n", |
335 |
| - " )\n", |
336 |
| - " (conv_1): Convolution(\n", |
337 |
| - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
338 |
| - " (adn): ADN(\n", |
339 |
| - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
340 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
341 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
342 |
| - " )\n", |
343 |
| - " )\n", |
344 |
| - " )\n", |
345 |
| - " )\n", |
346 |
| - " (upcat_1_2): UpCat(\n", |
347 |
| - " (upsample): UpSample(\n", |
348 |
| - " (deconv): ConvTranspose3d(64, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", |
349 |
| - " )\n", |
350 |
| - " (convs): TwoConv(\n", |
351 |
| - " (conv_0): Convolution(\n", |
352 |
| - " (conv): Conv3d(96, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
353 |
| - " (adn): ADN(\n", |
354 |
| - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
355 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
356 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
357 |
| - " )\n", |
358 |
| - " )\n", |
359 |
| - " (conv_1): Convolution(\n", |
360 |
| - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
361 |
| - " (adn): ADN(\n", |
362 |
| - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
363 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
364 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
365 |
| - " )\n", |
366 |
| - " )\n", |
367 |
| - " )\n", |
368 |
| - " )\n", |
369 |
| - " (upcat_2_2): UpCat(\n", |
370 |
| - " (upsample): UpSample(\n", |
371 |
| - " (deconv): ConvTranspose3d(128, 64, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", |
372 |
| - " )\n", |
373 |
| - " (convs): TwoConv(\n", |
374 |
| - " (conv_0): Convolution(\n", |
375 |
| - " (conv): Conv3d(192, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
376 |
| - " (adn): ADN(\n", |
377 |
| - " (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
378 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
379 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
380 |
| - " )\n", |
381 |
| - " )\n", |
382 |
| - " (conv_1): Convolution(\n", |
383 |
| - " (conv): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
384 |
| - " (adn): ADN(\n", |
385 |
| - " (N): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
386 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
387 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
388 |
| - " )\n", |
389 |
| - " )\n", |
390 |
| - " )\n", |
391 |
| - " )\n", |
392 |
| - " (upcat_0_3): UpCat(\n", |
393 |
| - " (upsample): UpSample(\n", |
394 |
| - " (deconv): ConvTranspose3d(32, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", |
395 |
| - " )\n", |
396 |
| - " (convs): TwoConv(\n", |
397 |
| - " (conv_0): Convolution(\n", |
398 |
| - " (conv): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
399 |
| - " (adn): ADN(\n", |
400 |
| - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
401 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
402 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
403 |
| - " )\n", |
404 |
| - " )\n", |
405 |
| - " (conv_1): Convolution(\n", |
406 |
| - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
407 |
| - " (adn): ADN(\n", |
408 |
| - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
409 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
410 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
411 |
| - " )\n", |
412 |
| - " )\n", |
413 |
| - " )\n", |
414 |
| - " )\n", |
415 |
| - " (upcat_1_3): UpCat(\n", |
416 |
| - " (upsample): UpSample(\n", |
417 |
| - " (deconv): ConvTranspose3d(64, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", |
418 |
| - " )\n", |
419 |
| - " (convs): TwoConv(\n", |
420 |
| - " (conv_0): Convolution(\n", |
421 |
| - " (conv): Conv3d(128, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
422 |
| - " (adn): ADN(\n", |
423 |
| - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
424 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
425 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
426 |
| - " )\n", |
427 |
| - " )\n", |
428 |
| - " (conv_1): Convolution(\n", |
429 |
| - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
430 |
| - " (adn): ADN(\n", |
431 |
| - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
432 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
433 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
434 |
| - " )\n", |
435 |
| - " )\n", |
436 |
| - " )\n", |
437 |
| - " )\n", |
438 |
| - " (upcat_0_4): UpCat(\n", |
439 |
| - " (upsample): UpSample(\n", |
440 |
| - " (deconv): ConvTranspose3d(32, 32, kernel_size=(2, 2, 2), stride=(2, 2, 2))\n", |
441 |
| - " )\n", |
442 |
| - " (convs): TwoConv(\n", |
443 |
| - " (conv_0): Convolution(\n", |
444 |
| - " (conv): Conv3d(160, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
445 |
| - " (adn): ADN(\n", |
446 |
| - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
447 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
448 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
449 |
| - " )\n", |
450 |
| - " )\n", |
451 |
| - " (conv_1): Convolution(\n", |
452 |
| - " (conv): Conv3d(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1))\n", |
453 |
| - " (adn): ADN(\n", |
454 |
| - " (N): BatchNorm3d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", |
455 |
| - " (D): Dropout(p=0.0, inplace=False)\n", |
456 |
| - " (A): LeakyReLU(negative_slope=0.1, inplace=True)\n", |
457 |
| - " )\n", |
458 |
| - " )\n", |
459 |
| - " )\n", |
460 |
| - " )\n", |
461 |
| - " (final_conv_0_1): Conv3d(32, 3, kernel_size=(1, 1, 1), stride=(1, 1, 1))\n", |
462 |
| - " (final_conv_0_2): Conv3d(32, 3, kernel_size=(1, 1, 1), stride=(1, 1, 1))\n", |
463 |
| - " (final_conv_0_3): Conv3d(32, 3, kernel_size=(1, 1, 1), stride=(1, 1, 1))\n", |
464 |
| - " (final_conv_0_4): Conv3d(32, 3, kernel_size=(1, 1, 1), stride=(1, 1, 1))\n", |
465 |
| - ")\n" |
466 |
| - ] |
467 |
| - } |
468 |
| - ], |
| 122 | + "outputs": [], |
469 | 123 | "source": [
|
470 | 124 | "model = BasicUnetPlusPlus(\n",
|
471 | 125 | " spatial_dims=3,\n",
|
|
0 commit comments