Skip to content

Commit a42ad81

Browse files
committed
[DLMED] update ddp examples
Signed-off-by: Nic Ma <[email protected]>
1 parent 4bc3870 commit a42ad81

File tree

3 files changed

+3
-7
lines changed

3 files changed

+3
-7
lines changed

acceleration/distributed_training/brats_training_ddp.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -88,7 +88,6 @@
8888
RandSpatialCropd,
8989
Spacingd,
9090
ToDeviced,
91-
EnsureType,
9291
)
9392
from monai.utils import set_determinism
9493

@@ -279,7 +278,7 @@ def main_worker(args):
279278
dice_metric = DiceMetric(include_background=True, reduction="mean")
280279
dice_metric_batch = DiceMetric(include_background=True, reduction="mean_batch")
281280

282-
post_trans = Compose([EnsureType(), Activations(sigmoid=True), AsDiscrete(threshold=0.5)])
281+
post_trans = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)])
283282

284283
# start a typical PyTorch training
285284
best_metric = -1

acceleration/distributed_training/unet_evaluation_ddp.py

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -62,7 +62,7 @@
6262
from monai.data import DataLoader, Dataset, create_test_image_3d, DistributedSampler, decollate_batch
6363
from monai.inferers import sliding_window_inference
6464
from monai.metrics import DiceMetric
65-
from monai.transforms import Activations, AsChannelFirstd, AsDiscrete, Compose, LoadImaged, ScaleIntensityd, EnsureTyped, EnsureType
65+
from monai.transforms import Activations, AsChannelFirstd, AsDiscrete, Compose, LoadImaged, ScaleIntensityd
6666

6767

6868
def evaluate(args):
@@ -92,7 +92,6 @@ def evaluate(args):
9292
LoadImaged(keys=["img", "seg"]),
9393
AsChannelFirstd(keys=["img", "seg"], channel_dim=-1),
9494
ScaleIntensityd(keys="img"),
95-
EnsureTyped(keys=["img", "seg"]),
9695
]
9796
)
9897

@@ -103,7 +102,7 @@ def evaluate(args):
103102
# sliding window inference need to input 1 image in every iteration
104103
val_loader = DataLoader(val_ds, batch_size=1, shuffle=False, num_workers=2, pin_memory=True, sampler=val_sampler)
105104
dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False)
106-
post_trans = Compose([EnsureType(), Activations(sigmoid=True), AsDiscrete(threshold=0.5)])
105+
post_trans = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)])
107106
# create UNet, DiceLoss and Adam optimizer
108107
device = torch.device(f"cuda:{args.local_rank}")
109108
torch.cuda.set_device(device)

acceleration/distributed_training/unet_training_ddp.py

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -67,7 +67,6 @@
6767
RandCropByPosNegLabeld,
6868
RandRotate90d,
6969
ScaleIntensityd,
70-
EnsureTyped,
7170
)
7271

7372

@@ -106,7 +105,6 @@ def train(args):
106105
keys=["img", "seg"], label_key="seg", spatial_size=[96, 96, 96], pos=1, neg=1, num_samples=4
107106
),
108107
RandRotate90d(keys=["img", "seg"], prob=0.5, spatial_axes=[0, 2]),
109-
EnsureTyped(keys=["img", "seg"]),
110108
]
111109
)
112110

0 commit comments

Comments
 (0)