Skip to content

Commit c19e171

Browse files
committed
3
Signed-off-by: myron <[email protected]>
1 parent e4602f2 commit c19e171

File tree

2 files changed

+4
-9
lines changed

2 files changed

+4
-9
lines changed

auto3dseg/tasks/kits23/README.md

Lines changed: 1 addition & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,6 @@
11

22
# KiTS23
33

4-
TODO
5-
6-
74
The KiTS dataset is from MICCAI 2023 challenge **[The 2023 Kidney and Kidney Tumor Segmentation Challenge (KiTS23)](https://kits-challenge.org/kits23/)**. The solution described here won the 1st place in the KiTS challenge [(NVAUTO team)](https://kits-challenge.org/kits23/#kits23-official-results):
85

96
Andriy Myronenko, Dong Yang, Yufan He and Daguang Xu: "Automated 3D Segmentation of Kidneys and Tumors in MICCAI KiTS 2023 Challenge". In MICCAI (2023). [arXiv](https://arxiv.org/abs/2310.04110)
@@ -25,10 +22,9 @@ The KiTS tutorial is only supported for **SegResNet** algo, Auto3DSeg runs a ful
2522
The Auto3DSeg can be run using a config **input.yaml**
2623

2724
```bash
28-
python -m monai.apps.auto3dseg AutoRunner run --input='./input.yaml' --algos='segresnet'
25+
python -m monai.apps.auto3dseg AutoRunner run --input=./input.yaml --algos=segresnet
2926
```
3027

31-
3228
## Validation performance: NVIDIA DGX-1 (8x V100 32G)
3329

3430
The validation results can be obtained by running the training script with MONAI 1.3.0 on NVIDIA DGX-1 with (8x V100 32GB) GPUs. The results below are in terms of average dice.

auto3dseg/tasks/kits23/input.yaml

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -16,13 +16,12 @@ sigmoid: true
1616
# the config below is optional, but it explicitly sets params as it was used during KiTS23 challenge
1717
# otherwise, the defaults are (auto_scale_allowed is True) and the system will attempt to guess these settings according to the available GPU (e.g. make batch size larger)
1818
auto_scale_allowed: false
19-
batch_size: 1
2019
roi_size: [256, 256, 256]
2120
num_epochs: 600
22-
resample: true
23-
resample_resolution: [0.78125, 0.78125, 0.78125]
2421
loss: {_target_: DiceLoss}
25-
22+
# batch_size: 1
23+
# resample: true
24+
# resample_resolution: [0.78125, 0.78125, 0.78125] # this is auto determined, uncomment to set another value manually
2625

2726

2827

0 commit comments

Comments
 (0)