|
| 1 | +import argparse |
| 2 | +import gc |
| 3 | +import os |
| 4 | +import sys |
| 5 | +from types import SimpleNamespace |
| 6 | + |
| 7 | +import numpy as np |
| 8 | +import pandas as pd |
| 9 | +import torch |
| 10 | +from monai.bundle import ConfigParser |
| 11 | +from monai.metrics import ConfusionMatrixMetric |
| 12 | +from monai.networks.nets import EfficientNetBN |
| 13 | +from torch.cuda.amp import GradScaler, autocast |
| 14 | +from torch.utils.tensorboard import SummaryWriter |
| 15 | +from tqdm import tqdm |
| 16 | +from utils import ( |
| 17 | + SurgDataset, |
| 18 | + create_checkpoint, |
| 19 | + get_train_dataloader, |
| 20 | + get_val_dataloader, |
| 21 | + mixup_data, |
| 22 | + set_seed, |
| 23 | +) |
| 24 | + |
| 25 | + |
| 26 | +def main(cfg): |
| 27 | + |
| 28 | + os.makedirs(str(cfg.output_dir + f"/fold{cfg.fold}/"), exist_ok=True) |
| 29 | + set_seed(cfg.seed) |
| 30 | + # set dataset, dataloader |
| 31 | + df = pd.read_csv(cfg.train_df) |
| 32 | + sucirr_videos = df[df["suction irrigator"] > 0].clip_name.unique() |
| 33 | + tipup_videos = df[df["tip-up fenestrated grasper"] > 0].clip_name.unique() |
| 34 | + df_oversample = df[ |
| 35 | + df.clip_name.isin(sucirr_videos) | df.clip_name.isin(tipup_videos) |
| 36 | + ] |
| 37 | + |
| 38 | + cfg.labels = df.columns.values[4:18] |
| 39 | + |
| 40 | + val_df = df[df["fold"] == cfg.fold] |
| 41 | + train_df = pd.concat( |
| 42 | + [df[df["fold"] != cfg.fold]] |
| 43 | + + [df_oversample[df_oversample["fold"] != cfg.fold]] * cfg.oversample_rate |
| 44 | + ) |
| 45 | + |
| 46 | + train_dataset = SurgDataset(cfg, df=train_df, mode="train") |
| 47 | + val_dataset = SurgDataset(cfg, df=val_df, mode="val") |
| 48 | + |
| 49 | + train_dataloader = get_train_dataloader(train_dataset, cfg) |
| 50 | + val_dataloader = get_val_dataloader(val_dataset, cfg) |
| 51 | + |
| 52 | + # set model |
| 53 | + model = EfficientNetBN( |
| 54 | + model_name=cfg.backbone, pretrained=True, num_classes=cfg.num_classes |
| 55 | + ) |
| 56 | + model = torch.nn.DataParallel(model) |
| 57 | + model.to(cfg.device) |
| 58 | + |
| 59 | + if cfg.weights is not None: |
| 60 | + model.load_state_dict( |
| 61 | + torch.load(os.path.join(f"{cfg.output_dir}/fold{cfg.fold}", cfg.weights))[ |
| 62 | + "model" |
| 63 | + ] |
| 64 | + ) |
| 65 | + print(f"weights from: {cfg.weights} are loaded.") |
| 66 | + |
| 67 | + # set optimizer, lr scheduler |
| 68 | + optimizer = torch.optim.AdamW(model.parameters(), lr=cfg.lr) |
| 69 | + scheduler = torch.optim.lr_scheduler.OneCycleLR( |
| 70 | + optimizer, |
| 71 | + max_lr=cfg.lr, |
| 72 | + epochs=cfg.epochs, |
| 73 | + steps_per_epoch=int(train_df.shape[0] / cfg.batch_size), |
| 74 | + pct_start=0.1, |
| 75 | + anneal_strategy="cos", |
| 76 | + final_div_factor=10**5, |
| 77 | + ) |
| 78 | + # set loss, metric |
| 79 | + class_num = list(train_df[cfg.labels].sum()) |
| 80 | + class_weights = [ |
| 81 | + train_df.shape[0] / (n * cfg.num_classes) if n > 0 else 1 for n in class_num |
| 82 | + ] |
| 83 | + loss_function = torch.nn.BCEWithLogitsLoss( |
| 84 | + weight=torch.as_tensor(class_weights).to(cfg.device) |
| 85 | + ) |
| 86 | + metric = ConfusionMatrixMetric(metric_name="F1", reduction="mean_batch") |
| 87 | + |
| 88 | + # set other tools |
| 89 | + scaler = GradScaler() |
| 90 | + writer = SummaryWriter(str(cfg.output_dir + f"/fold{cfg.fold}/")) |
| 91 | + |
| 92 | + # train and val loop |
| 93 | + step = 0 |
| 94 | + i = 0 |
| 95 | + best_metric = run_eval( |
| 96 | + model=model, |
| 97 | + val_dataloader=val_dataloader, |
| 98 | + cfg=cfg, |
| 99 | + writer=writer, |
| 100 | + epoch=-1, |
| 101 | + metric=metric, |
| 102 | + ) |
| 103 | + optimizer.zero_grad() |
| 104 | + print("start from: ", best_metric) |
| 105 | + for epoch in range(cfg.epochs): |
| 106 | + print("EPOCH:", epoch) |
| 107 | + gc.collect() |
| 108 | + run_train( |
| 109 | + model=model, |
| 110 | + train_dataloader=train_dataloader, |
| 111 | + optimizer=optimizer, |
| 112 | + scheduler=scheduler, |
| 113 | + cfg=cfg, |
| 114 | + scaler=scaler, |
| 115 | + writer=writer, |
| 116 | + epoch=epoch, |
| 117 | + iteration=i, |
| 118 | + step=step, |
| 119 | + loss_function=loss_function, |
| 120 | + ) |
| 121 | + |
| 122 | + val_metric = run_eval( |
| 123 | + model=model, |
| 124 | + val_dataloader=val_dataloader, |
| 125 | + cfg=cfg, |
| 126 | + writer=writer, |
| 127 | + epoch=epoch, |
| 128 | + metric=metric, |
| 129 | + ) |
| 130 | + |
| 131 | + if val_metric > best_metric: |
| 132 | + print(f"SAVING CHECKPOINT: val_metric {best_metric:.5} -> {val_metric:.5}") |
| 133 | + best_metric = val_metric |
| 134 | + |
| 135 | + checkpoint = create_checkpoint( |
| 136 | + model, |
| 137 | + optimizer, |
| 138 | + epoch, |
| 139 | + scheduler=scheduler, |
| 140 | + scaler=scaler, |
| 141 | + ) |
| 142 | + torch.save( |
| 143 | + checkpoint, |
| 144 | + f"{cfg.output_dir}/fold{cfg.fold}/checkpoint_best_metric.pth", |
| 145 | + ) |
| 146 | + |
| 147 | + |
| 148 | +def run_train( |
| 149 | + model, |
| 150 | + train_dataloader, |
| 151 | + optimizer, |
| 152 | + scheduler, |
| 153 | + cfg, |
| 154 | + scaler, |
| 155 | + writer, |
| 156 | + epoch, |
| 157 | + iteration, |
| 158 | + step, |
| 159 | + loss_function, |
| 160 | +): |
| 161 | + model.train() |
| 162 | + losses = [] |
| 163 | + progress_bar = tqdm(range(len(train_dataloader))) |
| 164 | + tr_it = iter(train_dataloader) |
| 165 | + |
| 166 | + for itr in progress_bar: |
| 167 | + batch = next(tr_it) |
| 168 | + inputs, labels = batch["input"].to(cfg.device), batch["label"].to(cfg.device) |
| 169 | + iteration += 1 |
| 170 | + |
| 171 | + step += cfg.batch_size |
| 172 | + torch.set_grad_enabled(True) |
| 173 | + if torch.rand(1) > 0.5: |
| 174 | + inputs, labels_a, labels_b, lam = mixup_data(inputs, labels) |
| 175 | + with autocast(): |
| 176 | + outputs = model(inputs) |
| 177 | + loss = lam * loss_function(outputs, labels_a) + ( |
| 178 | + 1 - lam |
| 179 | + ) * loss_function(outputs, labels_b) |
| 180 | + else: |
| 181 | + with autocast(): |
| 182 | + outputs = model(inputs) |
| 183 | + loss = loss_function(outputs, labels) |
| 184 | + losses.append(loss.item()) |
| 185 | + |
| 186 | + scaler.scale(loss).backward() |
| 187 | + torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) |
| 188 | + scaler.step(optimizer) |
| 189 | + scaler.update() |
| 190 | + optimizer.zero_grad() |
| 191 | + scheduler.step() |
| 192 | + |
| 193 | + progress_bar.set_description(f"loss: {np.mean(losses):.2f}") |
| 194 | + |
| 195 | + |
| 196 | +def run_eval(model, val_dataloader, cfg, writer, epoch, metric): |
| 197 | + |
| 198 | + model.eval() |
| 199 | + torch.set_grad_enabled(False) |
| 200 | + |
| 201 | + progress_bar = tqdm(range(len(val_dataloader))) |
| 202 | + tr_it = iter(val_dataloader) |
| 203 | + |
| 204 | + for itr in progress_bar: |
| 205 | + batch = next(tr_it) |
| 206 | + inputs, labels = batch["input"].to(cfg.device), batch["label"].to(cfg.device) |
| 207 | + outputs = model(inputs) |
| 208 | + outputs = (torch.sigmoid(outputs) > cfg.clf_threshold).float() |
| 209 | + metric(outputs, labels) |
| 210 | + score = metric.aggregate()[0] |
| 211 | + print(score) |
| 212 | + score = torch.mean(score).item() |
| 213 | + metric.reset() |
| 214 | + writer.add_scalar("F1", score, epoch) |
| 215 | + |
| 216 | + return score |
| 217 | + |
| 218 | + |
| 219 | +if __name__ == "__main__": |
| 220 | + |
| 221 | + sys.path.append("configs") |
| 222 | + sys.path.append("models") |
| 223 | + sys.path.append("data") |
| 224 | + |
| 225 | + arg_parser = argparse.ArgumentParser(description="") |
| 226 | + |
| 227 | + arg_parser.add_argument( |
| 228 | + "-c", "--config", type=str, default="cfg_efnb4.yaml", help="config filename" |
| 229 | + ) |
| 230 | + arg_parser.add_argument("-f", "--fold", type=int, default=0, help="fold") |
| 231 | + arg_parser.add_argument("-s", "--seed", type=int, default=-1, help="seed") |
| 232 | + arg_parser.add_argument("-w", "--weights", default=None, help="the path of weights") |
| 233 | + |
| 234 | + input_args, _ = arg_parser.parse_known_args(sys.argv) |
| 235 | + |
| 236 | + config_parser = ConfigParser() |
| 237 | + config_parser.read_config(input_args.config) |
| 238 | + config_parser.parse() |
| 239 | + cfg = SimpleNamespace(**config_parser.get_parsed_content("cfg")) |
| 240 | + |
| 241 | + cfg.fold = input_args.fold |
| 242 | + cfg.seed = input_args.seed |
| 243 | + cfg.weights = input_args.weights |
| 244 | + |
| 245 | + main(cfg) |
0 commit comments