|
| 1 | +# Copyright 2023 MONAI Consortium |
| 2 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 3 | +# you may not use this file except in compliance with the License. |
| 4 | +# You may obtain a copy of the License at |
| 5 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 6 | +# Unless required by applicable law or agreed to in writing, software |
| 7 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 8 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 9 | +# See the License for the specific language governing permissions and |
| 10 | +# limitations under the License. |
| 11 | + |
| 12 | +import logging |
| 13 | +import os |
| 14 | +import sys |
| 15 | +import tempfile |
| 16 | +from glob import glob |
| 17 | + |
| 18 | +import nibabel as nib |
| 19 | +import numpy as np |
| 20 | +import torch |
| 21 | +from ignite.engine import Events, create_supervised_evaluator, create_supervised_trainer |
| 22 | +from ignite.handlers import EarlyStopping, ModelCheckpoint |
| 23 | + |
| 24 | +import monai |
| 25 | +from monai.data import ImageDataset, create_test_image_3d, decollate_batch, DataLoader |
| 26 | +from monai.handlers import ( |
| 27 | + MetricsReloadedBinaryHandler, |
| 28 | + StatsHandler, |
| 29 | + stopping_fn_from_metric, |
| 30 | +) |
| 31 | +from monai.transforms import ( |
| 32 | + Activations, |
| 33 | + EnsureChannelFirst, |
| 34 | + AsDiscrete, |
| 35 | + Compose, |
| 36 | + RandSpatialCrop, |
| 37 | + Resize, |
| 38 | + ScaleIntensity, |
| 39 | +) |
| 40 | + |
| 41 | + |
| 42 | +def main(tempdir, img_size=96): |
| 43 | + monai.config.print_config() |
| 44 | + logging.basicConfig(stream=sys.stdout, level=logging.INFO) |
| 45 | + |
| 46 | + # Set patch size |
| 47 | + patch_size = (int(img_size / 2.0),) * 3 |
| 48 | + |
| 49 | + # create a temporary directory and 40 random image, mask pairs |
| 50 | + print(f"generating synthetic data to {tempdir} (this may take a while)") |
| 51 | + for i in range(40): |
| 52 | + im, seg = create_test_image_3d(img_size, img_size, img_size, num_seg_classes=1) |
| 53 | + |
| 54 | + n = nib.Nifti1Image(im, np.eye(4)) |
| 55 | + nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz")) |
| 56 | + |
| 57 | + n = nib.Nifti1Image(seg, np.eye(4)) |
| 58 | + nib.save(n, os.path.join(tempdir, f"lab{i:d}.nii.gz")) |
| 59 | + |
| 60 | + images = sorted(glob(os.path.join(tempdir, "im*.nii.gz"))) |
| 61 | + segs = sorted(glob(os.path.join(tempdir, "lab*.nii.gz"))) |
| 62 | + |
| 63 | + # define transforms for image and segmentation |
| 64 | + train_imtrans = Compose( |
| 65 | + [ |
| 66 | + ScaleIntensity(), |
| 67 | + EnsureChannelFirst(), |
| 68 | + RandSpatialCrop(patch_size, random_size=False), |
| 69 | + ] |
| 70 | + ) |
| 71 | + train_segtrans = Compose([EnsureChannelFirst(), RandSpatialCrop(patch_size, random_size=False)]) |
| 72 | + val_imtrans = Compose([ScaleIntensity(), EnsureChannelFirst(), Resize(patch_size)]) |
| 73 | + val_segtrans = Compose([EnsureChannelFirst(), Resize(patch_size)]) |
| 74 | + |
| 75 | + # define image dataset, data loader |
| 76 | + check_ds = ImageDataset(images, segs, transform=train_imtrans, seg_transform=train_segtrans) |
| 77 | + check_loader = DataLoader(check_ds, batch_size=10, num_workers=2, pin_memory=torch.cuda.is_available()) |
| 78 | + im, seg = monai.utils.misc.first(check_loader) |
| 79 | + print(im.shape, seg.shape) |
| 80 | + |
| 81 | + # create a training data loader |
| 82 | + train_ds = ImageDataset(images[:20], segs[:20], transform=train_imtrans, seg_transform=train_segtrans) |
| 83 | + train_loader = DataLoader( |
| 84 | + train_ds, |
| 85 | + batch_size=5, |
| 86 | + shuffle=True, |
| 87 | + num_workers=8, |
| 88 | + pin_memory=torch.cuda.is_available(), |
| 89 | + ) |
| 90 | + # create a validation data loader |
| 91 | + val_ds = ImageDataset(images[-20:], segs[-20:], transform=val_imtrans, seg_transform=val_segtrans) |
| 92 | + val_loader = DataLoader(val_ds, batch_size=5, num_workers=8, pin_memory=torch.cuda.is_available()) |
| 93 | + |
| 94 | + # Compute UNet levels and strides from image size |
| 95 | + min_size = 4 # minimum size allowed at coarsest resolution level |
| 96 | + num_levels = int(np.maximum(np.ceil(np.log2(np.min(img_size)) - np.log2(min_size)), 1)) |
| 97 | + channels = [2 ** (i + 4) for i in range(num_levels)] |
| 98 | + |
| 99 | + # create UNet, DiceLoss and Adam optimizer |
| 100 | + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 101 | + net = monai.networks.nets.UNet( |
| 102 | + spatial_dims=3, |
| 103 | + in_channels=1, |
| 104 | + out_channels=1, |
| 105 | + channels=channels, |
| 106 | + strides=(2,) * (num_levels - 1), |
| 107 | + num_res_units=2, |
| 108 | + ).to(device) |
| 109 | + loss = monai.losses.DiceLoss(sigmoid=True) |
| 110 | + lr = 1e-3 |
| 111 | + opt = torch.optim.Adam(net.parameters(), lr) |
| 112 | + |
| 113 | + # Ignite trainer expects batch=(img, seg) and returns output=loss at every iteration, |
| 114 | + # user can add output_transform to return other values, like: y_pred, y, etc. |
| 115 | + trainer = create_supervised_trainer(net, opt, loss, device, False) |
| 116 | + |
| 117 | + # adding checkpoint handler to save models (network params and optimizer stats) during training |
| 118 | + checkpoint_handler = ModelCheckpoint("./runs_array/", "net", n_saved=10, require_empty=False) |
| 119 | + trainer.add_event_handler( |
| 120 | + event_name=Events.EPOCH_COMPLETED, |
| 121 | + handler=checkpoint_handler, |
| 122 | + to_save={"net": net, "opt": opt}, |
| 123 | + ) |
| 124 | + |
| 125 | + # StatsHandler prints loss at every iteration and print metrics at every epoch, |
| 126 | + # we don't set metrics for trainer here, so just print loss, user can also customize print functions |
| 127 | + # and can use output_transform to convert engine.state.output if it's not a loss value |
| 128 | + train_stats_handler = StatsHandler(name="trainer", output_transform=lambda x: x) |
| 129 | + train_stats_handler.attach(trainer) |
| 130 | + |
| 131 | + # Set parameters for validation |
| 132 | + validation_every_n_epochs = 1 |
| 133 | + # Use validation metrics from MetricsReloaded |
| 134 | + metric_name = "Intersection_Over_Union" |
| 135 | + # add evaluation metric to the evaluator engine |
| 136 | + val_metrics = {metric_name: MetricsReloadedBinaryHandler("Intersection Over Union")} |
| 137 | + |
| 138 | + post_pred = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)]) |
| 139 | + post_label = Compose([AsDiscrete(threshold=0.5)]) |
| 140 | + |
| 141 | + # Ignite evaluator expects batch=(img, seg) and returns output=(y_pred, y) at every iteration, |
| 142 | + # user can add output_transform to return other values |
| 143 | + evaluator = create_supervised_evaluator( |
| 144 | + net, |
| 145 | + val_metrics, |
| 146 | + device, |
| 147 | + True, |
| 148 | + output_transform=lambda x, y, y_pred: ( |
| 149 | + [post_pred(i) for i in decollate_batch(y_pred)], |
| 150 | + [post_label(i) for i in decollate_batch(y)], |
| 151 | + ), |
| 152 | + ) |
| 153 | + |
| 154 | + @trainer.on(Events.EPOCH_COMPLETED(every=validation_every_n_epochs)) |
| 155 | + def run_validation(engine): |
| 156 | + evaluator.run(val_loader) |
| 157 | + |
| 158 | + # add early stopping handler to evaluator |
| 159 | + early_stopper = EarlyStopping(patience=4, score_function=stopping_fn_from_metric(metric_name), trainer=trainer) |
| 160 | + evaluator.add_event_handler(event_name=Events.EPOCH_COMPLETED, handler=early_stopper) |
| 161 | + |
| 162 | + # add stats event handler to print validation stats via evaluator |
| 163 | + val_stats_handler = StatsHandler( |
| 164 | + name="evaluator", |
| 165 | + output_transform=lambda x: None, # no need to print loss value, so disable per iteration output |
| 166 | + global_epoch_transform=lambda x: trainer.state.epoch, |
| 167 | + ) # fetch global epoch number from trainer |
| 168 | + val_stats_handler.attach(evaluator) |
| 169 | + |
| 170 | + train_epochs = 30 |
| 171 | + state = trainer.run(train_loader, train_epochs) |
| 172 | + print(state) |
| 173 | + |
| 174 | + |
| 175 | +if __name__ == "__main__": |
| 176 | + with tempfile.TemporaryDirectory() as tempdir: |
| 177 | + main(tempdir) |
0 commit comments