could not create a primitive #1049
Unanswered
oscarramirezs
asked this question in
Q&A
Replies: 1 comment
-
Is this error occurs when running model on cpu device? Based on some references, it could be a limitation of specific CPU instructions, could you try confirm, if so, can you try run it on GPU? And if the problem still exists, a sample code for reproducing the error will be helpful for the team to dig into it. Thanks! |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
hello
thanks guys for this work,,
I am working on a segmentation task using Swin UNETR, and after the first epoch I got the following error => RuntimeError: could not create a primitive`
`
1/1, train_loss: 0.7774
epoch 1 average loss: 0.7774
RuntimeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_2596\3568985229.py in
77 #roi_size = (256, 256, 192)
78 sw_batch_size = 1
---> 79 val_outputs = sliding_window_inference(
80 val_inputs, roi_size, sw_batch_size, model)
81 val_outputs = [post_pred(i) for i in decollate_batch(val_outputs)]
C:\ProgramData\Anaconda3\lib\site-packages\monai\inferers\utils.py in sliding_window_inference(inputs, roi_size, sw_batch_size, predictor, overlap, mode, sigma_scale, padding_mode, cval, sw_device, device, progress, roi_weight_map, *args, **kwargs)
178 [convert_data_type(inputs[win_slice], torch.Tensor)[0] for win_slice in unravel_slice]
179 ).to(sw_device)
--> 180 seg_prob_out = predictor(window_data, *args, **kwargs) # batched patch segmentation
181
182 # convert seg_prob_out to tuple seg_prob_tuple, this does not allocate new memory.
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
1188 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1189 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1190 return forward_call(*input, **kwargs)
1191 # Do not call functions when jit is used
1192 full_backward_hooks, non_full_backward_hooks = [], []
C:\ProgramData\Anaconda3\lib\site-packages\monai\networks\nets\swin_unetr.py in forward(self, x_in)
296 def forward(self, x_in):
297 hidden_states_out = self.swinViT(x_in, self.normalize)
--> 298 enc0 = self.encoder1(x_in)
299 enc1 = self.encoder2(hidden_states_out[0])
300 enc2 = self.encoder3(hidden_states_out[1])
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
1188 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1189 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1190 return forward_call(*input, **kwargs)
1191 # Do not call functions when jit is used
1192 full_backward_hooks, non_full_backward_hooks = [], []
C:\ProgramData\Anaconda3\lib\site-packages\monai\networks\blocks\unetr_block.py in forward(self, inp)
256
257 def forward(self, inp):
--> 258 return self.layer(inp)
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
1188 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1189 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1190 return forward_call(*input, **kwargs)
1191 # Do not call functions when jit is used
1192 full_backward_hooks, non_full_backward_hooks = [], []
C:\ProgramData\Anaconda3\lib\site-packages\monai\networks\blocks\dynunet_block.py in forward(self, inp)
102 out = self.norm2(out)
103 if hasattr(self, "conv3"):
--> 104 residual = self.conv3(residual)
105 if hasattr(self, "norm3"):
106 residual = self.norm3(residual)
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
1188 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1189 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1190 return forward_call(*input, **kwargs)
1191 # Do not call functions when jit is used
1192 full_backward_hooks, non_full_backward_hooks = [], []
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\container.py in forward(self, input)
202 def forward(self, input):
203 for module in self:
--> 204 input = module(input)
205 return input
206
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
1188 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1189 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1190 return forward_call(*input, **kwargs)
1191 # Do not call functions when jit is used
1192 full_backward_hooks, non_full_backward_hooks = [], []
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\conv.py in forward(self, input)
611
612 def forward(self, input: Tensor) -> Tensor:
--> 613 return self._conv_forward(input, self.weight, self.bias)
614
615
C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\conv.py in _conv_forward(self, input, weight, bias)
606 self.groups,
607 )
--> 608 return F.conv3d(
609 input, weight, bias, self.stride, self.padding, self.dilation, self.groups
610 )
RuntimeError: could not create a primitive`
thank you for your help
Oscar
Beta Was this translation helpful? Give feedback.
All reactions