Skip to content

A tutorial to use randomised permutation during training #807

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Jul 19, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view

Large diffs are not rendered by default.

Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
110 changes: 110 additions & 0 deletions modules/generate_random_permutations/randomizedPermutations.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
import numpy as np
import os
import torch
import glob
import random
from monai.data import DataLoader
from monai.transforms.transform import Transform
from monai.transforms import (Affine, LoadImage, Rotate, NormalizeIntensity, Transpose, Compose, Resize, AsChannelFirst, AsChannelLast, ScaleIntensity, RandFlip, Rotate90, AddChannel, GaussianSmooth, AdjustContrast)
from random import shuffle

class Dataset(torch.utils.data.Dataset):
def __init__(self, image_file_list, transforms, shuffle_transforms=1):
self.image_file_list = image_file_list
if shuffle_transforms:
transform_list = [LoadImage(image_only=True), AddChannel(), Resize((299, 299))] + shuffle(transforms)
self.transform = Compose(transpose_list)
else:
self.transform = Compose([LoadImage(image_only=True), AddChannel(), Resize((299, 299))] + transforms)

def __len__(self):
return len(self.image_file_list)

def __getitem__(self, index):
return self.transform(self.image_file_list[index])


class AugmentData(object):
def __init__(self, image_loading_transforms = [LoadImage(image_only=True)], augmentation_dict = {}, num_augmentations=5, output_size=(200, 200), batch_size=3):
self.output_size = output_size
self.batch_size = batch_size
self.augmentation_dict = augmentation_dict
self.aug_seq = self.create_augmentation_sequence()
self.image_loading_transforms = image_loading_transforms
self.num_augmentations = num_augmentations

def create_augmentation_sequence(self):
augmentation_transforms = []
for aug, num_aug in self.augmentation_dict.items():
_x = [aug]*num_aug
augmentation_transforms = augmentation_transforms + _x
return augmentation_transforms


def create_transform_list(self, augmentation_sequence):
transform_list = self.image_loading_transforms
for _aug in augmentation_sequence:
if _aug == 'rotate':
transform_list.append(Rotate(random.randint(0, 100)))
if _aug == 'flip':
transform_list.append(RandFlip())
if _aug == 'rotate90':
transform_list.append(Rotate90())
if _aug == 'intensityGaussian':
transform_list.append(GaussianSmooth(sigma=random.randint(0, 10)))
if _aug == 'adjustContrast':
transform_list.append(AdjustContrast(gamma=random.randint(0, 10)))

transform_list.append(ScaleIntensity())
transform_list.append(Resize(self.output_size))
return transform_list


def create_native_transform_list(self):
transform_list = Compose(self.image_loading_transforms + [ScaleIntensity(), Resize(self.output_size)])
return transform_list


def __call__(self, image_file_list, *args, **kwargs):
image_file_list = image_file_list

IMG = []
for img in zip(image_file_list):
native_transform_list = self.create_native_transform_list()
native_img = native_transform_list(img)
IMG = IMG + native_img
for i in range(self.num_augmentations):
shuffle(self.aug_seq)
transform_list = self.create_transform_list(self.aug_seq)
img_augmentated = Compose(transform_list)(img)
IMG = IMG + img_augmentated

random.shuffle(IMG)
ALLIMG_NP = np.stack(IMG, axis=0)
OUT_IMAGE_NP = ALLIMG_NP[0:self.batch_size, :]
return OUT_IMAGE_NP



def main():

image_dir='./exampleImages'
image_file_list = glob.glob(image_dir + '/*.png')
output_size = (400, 400)
transform_list = [RandFlip(), Rotate(20), NormalizeIntensity(), Rotate90()]

#print(LoadImage(image_only=True)(image_file_list[0]).shape)
#train_dataset=Dataset(image_file_list, transform_list, shuffle_transforms=0)
#train_dataloader = DataLoader(train_dataset, batch_size=4, num_workers=2)
#for _batch_data in train_dataloader:
# img = _batch_data[0]

image_loading_transforms = [LoadImage(image_only=True), AddChannel()]
augmentation_dict = {'rotate': 3, 'flip': 2, 'rotate90': 1, 'intensityGaussian': 2, 'adjustContrast' : 2}

img = AugmentData(image_loading_transforms=image_loading_transforms, augmentation_dict = augmentation_dict)(image_file_list)
print(img.shape)


if __name__ == '__main__':
main()
1 change: 1 addition & 0 deletions runner.sh
Original file line number Diff line number Diff line change
Expand Up @@ -74,6 +74,7 @@ pattern="-and -name '*' -and ! -wholename '*federated_learning*'\
-and ! -wholename '*nuclick_infer*'\
-and ! -wholename '*nuclick_training_notebook*'\
-and ! -wholename '*full_gpu_inference_pipeline*'\
-and ! -wholename '*generate_random_permutations*'\
-and ! -wholename '*get_started*'"
kernelspec="python3"

Expand Down