|
| 1 | +// SPDX-License-Identifier: GPL-2.0 |
| 2 | + |
| 3 | +//! Slices to user space memory regions. |
| 4 | +//! |
| 5 | +//! C header: [`include/linux/uaccess.h`](srctree/include/linux/uaccess.h) |
| 6 | +
|
| 7 | +use crate::{alloc::Flags, bindings, error::Result, prelude::*}; |
| 8 | +use alloc::vec::Vec; |
| 9 | +use core::ffi::{c_ulong, c_void}; |
| 10 | +use core::mem::MaybeUninit; |
| 11 | + |
| 12 | +/// The type used for userspace addresses. |
| 13 | +pub type UserPtr = usize; |
| 14 | + |
| 15 | +/// A pointer to an area in userspace memory, which can be either read-only or read-write. |
| 16 | +/// |
| 17 | +/// All methods on this struct are safe: attempting to read or write on bad addresses (either out of |
| 18 | +/// the bound of the slice or unmapped addresses) will return [`EFAULT`]. Concurrent access, |
| 19 | +/// *including data races to/from userspace memory*, is permitted, because fundamentally another |
| 20 | +/// userspace thread/process could always be modifying memory at the same time (in the same way that |
| 21 | +/// userspace Rust's [`std::io`] permits data races with the contents of files on disk). In the |
| 22 | +/// presence of a race, the exact byte values read/written are unspecified but the operation is |
| 23 | +/// well-defined. Kernelspace code should validate its copy of data after completing a read, and not |
| 24 | +/// expect that multiple reads of the same address will return the same value. |
| 25 | +/// |
| 26 | +/// These APIs are designed to make it difficult to accidentally write TOCTOU (time-of-check to |
| 27 | +/// time-of-use) bugs. Every time a memory location is read, the reader's position is advanced by |
| 28 | +/// the read length and the next read will start from there. This helps prevent accidentally reading |
| 29 | +/// the same location twice and causing a TOCTOU bug. |
| 30 | +/// |
| 31 | +/// Creating a [`UserSliceReader`] and/or [`UserSliceWriter`] consumes the `UserSlice`, helping |
| 32 | +/// ensure that there aren't multiple readers or writers to the same location. |
| 33 | +/// |
| 34 | +/// If double-fetching a memory location is necessary for some reason, then that is done by creating |
| 35 | +/// multiple readers to the same memory location, e.g. using [`clone_reader`]. |
| 36 | +/// |
| 37 | +/// # Examples |
| 38 | +/// |
| 39 | +/// Takes a region of userspace memory from the current process, and modify it by adding one to |
| 40 | +/// every byte in the region. |
| 41 | +/// |
| 42 | +/// ```no_run |
| 43 | +/// use alloc::vec::Vec; |
| 44 | +/// use core::ffi::c_void; |
| 45 | +/// use kernel::error::Result; |
| 46 | +/// use kernel::uaccess::{UserPtr, UserSlice}; |
| 47 | +/// |
| 48 | +/// fn bytes_add_one(uptr: UserPtr, len: usize) -> Result<()> { |
| 49 | +/// let (read, mut write) = UserSlice::new(uptr, len).reader_writer(); |
| 50 | +/// |
| 51 | +/// let mut buf = Vec::new(); |
| 52 | +/// read.read_all(&mut buf, GFP_KERNEL)?; |
| 53 | +/// |
| 54 | +/// for b in &mut buf { |
| 55 | +/// *b = b.wrapping_add(1); |
| 56 | +/// } |
| 57 | +/// |
| 58 | +/// write.write_slice(&buf)?; |
| 59 | +/// Ok(()) |
| 60 | +/// } |
| 61 | +/// ``` |
| 62 | +/// |
| 63 | +/// Example illustrating a TOCTOU (time-of-check to time-of-use) bug. |
| 64 | +/// |
| 65 | +/// ```no_run |
| 66 | +/// use alloc::vec::Vec; |
| 67 | +/// use core::ffi::c_void; |
| 68 | +/// use kernel::error::{code::EINVAL, Result}; |
| 69 | +/// use kernel::uaccess::{UserPtr, UserSlice}; |
| 70 | +/// |
| 71 | +/// /// Returns whether the data in this region is valid. |
| 72 | +/// fn is_valid(uptr: UserPtr, len: usize) -> Result<bool> { |
| 73 | +/// let read = UserSlice::new(uptr, len).reader(); |
| 74 | +/// |
| 75 | +/// let mut buf = Vec::new(); |
| 76 | +/// read.read_all(&mut buf, GFP_KERNEL)?; |
| 77 | +/// |
| 78 | +/// todo!() |
| 79 | +/// } |
| 80 | +/// |
| 81 | +/// /// Returns the bytes behind this user pointer if they are valid. |
| 82 | +/// fn get_bytes_if_valid(uptr: UserPtr, len: usize) -> Result<Vec<u8>> { |
| 83 | +/// if !is_valid(uptr, len)? { |
| 84 | +/// return Err(EINVAL); |
| 85 | +/// } |
| 86 | +/// |
| 87 | +/// let read = UserSlice::new(uptr, len).reader(); |
| 88 | +/// |
| 89 | +/// let mut buf = Vec::new(); |
| 90 | +/// read.read_all(&mut buf, GFP_KERNEL)?; |
| 91 | +/// |
| 92 | +/// // THIS IS A BUG! The bytes could have changed since we checked them. |
| 93 | +/// // |
| 94 | +/// // To avoid this kind of bug, don't call `UserSlice::new` multiple |
| 95 | +/// // times with the same address. |
| 96 | +/// Ok(buf) |
| 97 | +/// } |
| 98 | +/// ``` |
| 99 | +/// |
| 100 | +/// [`std::io`]: https://doc.rust-lang.org/std/io/index.html |
| 101 | +/// [`clone_reader`]: UserSliceReader::clone_reader |
| 102 | +pub struct UserSlice { |
| 103 | + ptr: UserPtr, |
| 104 | + length: usize, |
| 105 | +} |
| 106 | + |
| 107 | +impl UserSlice { |
| 108 | + /// Constructs a user slice from a raw pointer and a length in bytes. |
| 109 | + /// |
| 110 | + /// Constructing a [`UserSlice`] performs no checks on the provided address and length, it can |
| 111 | + /// safely be constructed inside a kernel thread with no current userspace process. Reads and |
| 112 | + /// writes wrap the kernel APIs `copy_from_user` and `copy_to_user`, which check the memory map |
| 113 | + /// of the current process and enforce that the address range is within the user range (no |
| 114 | + /// additional calls to `access_ok` are needed). Validity of the pointer is checked when you |
| 115 | + /// attempt to read or write, not in the call to `UserSlice::new`. |
| 116 | + /// |
| 117 | + /// Callers must be careful to avoid time-of-check-time-of-use (TOCTOU) issues. The simplest way |
| 118 | + /// is to create a single instance of [`UserSlice`] per user memory block as it reads each byte |
| 119 | + /// at most once. |
| 120 | + pub fn new(ptr: UserPtr, length: usize) -> Self { |
| 121 | + UserSlice { ptr, length } |
| 122 | + } |
| 123 | + |
| 124 | + /// Reads the entirety of the user slice, appending it to the end of the provided buffer. |
| 125 | + /// |
| 126 | + /// Fails with [`EFAULT`] if the read happens on a bad address. |
| 127 | + pub fn read_all(self, buf: &mut Vec<u8>, flags: Flags) -> Result { |
| 128 | + self.reader().read_all(buf, flags) |
| 129 | + } |
| 130 | + |
| 131 | + /// Constructs a [`UserSliceReader`]. |
| 132 | + pub fn reader(self) -> UserSliceReader { |
| 133 | + UserSliceReader { |
| 134 | + ptr: self.ptr, |
| 135 | + length: self.length, |
| 136 | + } |
| 137 | + } |
| 138 | + |
| 139 | + /// Constructs a [`UserSliceWriter`]. |
| 140 | + pub fn writer(self) -> UserSliceWriter { |
| 141 | + UserSliceWriter { |
| 142 | + ptr: self.ptr, |
| 143 | + length: self.length, |
| 144 | + } |
| 145 | + } |
| 146 | + |
| 147 | + /// Constructs both a [`UserSliceReader`] and a [`UserSliceWriter`]. |
| 148 | + /// |
| 149 | + /// Usually when this is used, you will first read the data, and then overwrite it afterwards. |
| 150 | + pub fn reader_writer(self) -> (UserSliceReader, UserSliceWriter) { |
| 151 | + ( |
| 152 | + UserSliceReader { |
| 153 | + ptr: self.ptr, |
| 154 | + length: self.length, |
| 155 | + }, |
| 156 | + UserSliceWriter { |
| 157 | + ptr: self.ptr, |
| 158 | + length: self.length, |
| 159 | + }, |
| 160 | + ) |
| 161 | + } |
| 162 | +} |
| 163 | + |
| 164 | +/// A reader for [`UserSlice`]. |
| 165 | +/// |
| 166 | +/// Used to incrementally read from the user slice. |
| 167 | +pub struct UserSliceReader { |
| 168 | + ptr: UserPtr, |
| 169 | + length: usize, |
| 170 | +} |
| 171 | + |
| 172 | +impl UserSliceReader { |
| 173 | + /// Skip the provided number of bytes. |
| 174 | + /// |
| 175 | + /// Returns an error if skipping more than the length of the buffer. |
| 176 | + pub fn skip(&mut self, num_skip: usize) -> Result { |
| 177 | + // Update `self.length` first since that's the fallible part of this operation. |
| 178 | + self.length = self.length.checked_sub(num_skip).ok_or(EFAULT)?; |
| 179 | + self.ptr = self.ptr.wrapping_add(num_skip); |
| 180 | + Ok(()) |
| 181 | + } |
| 182 | + |
| 183 | + /// Create a reader that can access the same range of data. |
| 184 | + /// |
| 185 | + /// Reading from the clone does not advance the current reader. |
| 186 | + /// |
| 187 | + /// The caller should take care to not introduce TOCTOU issues, as described in the |
| 188 | + /// documentation for [`UserSlice`]. |
| 189 | + pub fn clone_reader(&self) -> UserSliceReader { |
| 190 | + UserSliceReader { |
| 191 | + ptr: self.ptr, |
| 192 | + length: self.length, |
| 193 | + } |
| 194 | + } |
| 195 | + |
| 196 | + /// Returns the number of bytes left to be read from this reader. |
| 197 | + /// |
| 198 | + /// Note that even reading less than this number of bytes may fail. |
| 199 | + pub fn len(&self) -> usize { |
| 200 | + self.length |
| 201 | + } |
| 202 | + |
| 203 | + /// Returns `true` if no data is available in the io buffer. |
| 204 | + pub fn is_empty(&self) -> bool { |
| 205 | + self.length == 0 |
| 206 | + } |
| 207 | + |
| 208 | + /// Reads raw data from the user slice into a kernel buffer. |
| 209 | + /// |
| 210 | + /// For a version that uses `&mut [u8]`, please see [`UserSliceReader::read_slice`]. |
| 211 | + /// |
| 212 | + /// Fails with [`EFAULT`] if the read happens on a bad address, or if the read goes out of |
| 213 | + /// bounds of this [`UserSliceReader`]. This call may modify `out` even if it returns an error. |
| 214 | + /// |
| 215 | + /// # Guarantees |
| 216 | + /// |
| 217 | + /// After a successful call to this method, all bytes in `out` are initialized. |
| 218 | + pub fn read_raw(&mut self, out: &mut [MaybeUninit<u8>]) -> Result { |
| 219 | + let len = out.len(); |
| 220 | + let out_ptr = out.as_mut_ptr().cast::<c_void>(); |
| 221 | + if len > self.length { |
| 222 | + return Err(EFAULT); |
| 223 | + } |
| 224 | + let Ok(len_ulong) = c_ulong::try_from(len) else { |
| 225 | + return Err(EFAULT); |
| 226 | + }; |
| 227 | + // SAFETY: `out_ptr` points into a mutable slice of length `len_ulong`, so we may write |
| 228 | + // that many bytes to it. |
| 229 | + let res = |
| 230 | + unsafe { bindings::copy_from_user(out_ptr, self.ptr as *const c_void, len_ulong) }; |
| 231 | + if res != 0 { |
| 232 | + return Err(EFAULT); |
| 233 | + } |
| 234 | + self.ptr = self.ptr.wrapping_add(len); |
| 235 | + self.length -= len; |
| 236 | + Ok(()) |
| 237 | + } |
| 238 | + |
| 239 | + /// Reads raw data from the user slice into a kernel buffer. |
| 240 | + /// |
| 241 | + /// Fails with [`EFAULT`] if the read happens on a bad address, or if the read goes out of |
| 242 | + /// bounds of this [`UserSliceReader`]. This call may modify `out` even if it returns an error. |
| 243 | + pub fn read_slice(&mut self, out: &mut [u8]) -> Result { |
| 244 | + // SAFETY: The types are compatible and `read_raw` doesn't write uninitialized bytes to |
| 245 | + // `out`. |
| 246 | + let out = unsafe { &mut *(out as *mut [u8] as *mut [MaybeUninit<u8>]) }; |
| 247 | + self.read_raw(out) |
| 248 | + } |
| 249 | + |
| 250 | + /// Reads the entirety of the user slice, appending it to the end of the provided buffer. |
| 251 | + /// |
| 252 | + /// Fails with [`EFAULT`] if the read happens on a bad address. |
| 253 | + pub fn read_all(mut self, buf: &mut Vec<u8>, flags: Flags) -> Result { |
| 254 | + let len = self.length; |
| 255 | + VecExt::<u8>::reserve(buf, len, flags)?; |
| 256 | + |
| 257 | + // The call to `try_reserve` was successful, so the spare capacity is at least `len` bytes |
| 258 | + // long. |
| 259 | + self.read_raw(&mut buf.spare_capacity_mut()[..len])?; |
| 260 | + |
| 261 | + // SAFETY: Since the call to `read_raw` was successful, so the next `len` bytes of the |
| 262 | + // vector have been initialized. |
| 263 | + unsafe { buf.set_len(buf.len() + len) }; |
| 264 | + Ok(()) |
| 265 | + } |
| 266 | +} |
| 267 | + |
| 268 | +/// A writer for [`UserSlice`]. |
| 269 | +/// |
| 270 | +/// Used to incrementally write into the user slice. |
| 271 | +pub struct UserSliceWriter { |
| 272 | + ptr: UserPtr, |
| 273 | + length: usize, |
| 274 | +} |
| 275 | + |
| 276 | +impl UserSliceWriter { |
| 277 | + /// Returns the amount of space remaining in this buffer. |
| 278 | + /// |
| 279 | + /// Note that even writing less than this number of bytes may fail. |
| 280 | + pub fn len(&self) -> usize { |
| 281 | + self.length |
| 282 | + } |
| 283 | + |
| 284 | + /// Returns `true` if no more data can be written to this buffer. |
| 285 | + pub fn is_empty(&self) -> bool { |
| 286 | + self.length == 0 |
| 287 | + } |
| 288 | + |
| 289 | + /// Writes raw data to this user pointer from a kernel buffer. |
| 290 | + /// |
| 291 | + /// Fails with [`EFAULT`] if the write happens on a bad address, or if the write goes out of |
| 292 | + /// bounds of this [`UserSliceWriter`]. This call may modify the associated userspace slice even |
| 293 | + /// if it returns an error. |
| 294 | + pub fn write_slice(&mut self, data: &[u8]) -> Result { |
| 295 | + let len = data.len(); |
| 296 | + let data_ptr = data.as_ptr().cast::<c_void>(); |
| 297 | + if len > self.length { |
| 298 | + return Err(EFAULT); |
| 299 | + } |
| 300 | + let Ok(len_ulong) = c_ulong::try_from(len) else { |
| 301 | + return Err(EFAULT); |
| 302 | + }; |
| 303 | + // SAFETY: `data_ptr` points into an immutable slice of length `len_ulong`, so we may read |
| 304 | + // that many bytes from it. |
| 305 | + let res = unsafe { bindings::copy_to_user(self.ptr as *mut c_void, data_ptr, len_ulong) }; |
| 306 | + if res != 0 { |
| 307 | + return Err(EFAULT); |
| 308 | + } |
| 309 | + self.ptr = self.ptr.wrapping_add(len); |
| 310 | + self.length -= len; |
| 311 | + Ok(()) |
| 312 | + } |
| 313 | +} |
0 commit comments