@@ -47,8 +47,7 @@ prob_data = Dict("num_sims_for_mean" => Nsims, "expected_mean" => expected_avg)
47
47
"""
48
48
DNA negative feedback autoregulatory model. Protein acts as repressor.
49
49
"""
50
- prob_jump_dnarepressor = JumpProblemNetwork (dna_rs, rates, tf, u0, prob, prob_data,
51
- eval_module = @__MODULE__ )
50
+ prob_jump_dnarepressor = JumpProblemNetwork (dna_rs, rates, tf, u0, prob, prob_data)
52
51
53
52
bd_rs = @reaction_network begin
54
53
k1, 0 --> A
@@ -64,8 +63,7 @@ prob_data = Dict("num_sims_for_mean" => Nsims, "expected_mean_at_t" => expected_
64
63
"""
65
64
Simple birth-death process with constant production and degradation.
66
65
"""
67
- prob_jump_constproduct = JumpProblemNetwork (bd_rs, rates, tf, u0, prob, prob_data,
68
- eval_module = @__MODULE__ )
66
+ prob_jump_constproduct = JumpProblemNetwork (bd_rs, rates, tf, u0, prob, prob_data)
69
67
70
68
nonlin_rs = @reaction_network begin
71
69
k1, 2 A --> B
@@ -84,8 +82,7 @@ prob_data = Dict("num_sims_for_mean" => Nsims, "expected_mean" => expected_avg)
84
82
"""
85
83
Example with a mix of nonlinear reactions, including third order
86
84
"""
87
- prob_jump_nonlinrxs = JumpProblemNetwork (nonlin_rs, rates, tf, u0, prob, prob_data,
88
- eval_module = @__MODULE__ )
85
+ prob_jump_nonlinrxs = JumpProblemNetwork (nonlin_rs, rates, tf, u0, prob, prob_data)
89
86
90
87
oscil_rs = @reaction_network begin
91
88
0.01 , (X, Y, Z) --> 0
@@ -105,8 +102,7 @@ prob = DiscreteProblem(oscil_rs, u0, (0.0, tf), eval_module = @__MODULE__)
105
102
"""
106
103
Oscillatory system, uses a mixture of jump types.
107
104
"""
108
- prob_jump_osc_mixed_jumptypes = JumpProblemNetwork (oscil_rs, nothing , tf, u0, prob, nothing ,
109
- eval_module = @__MODULE__ )
105
+ prob_jump_osc_mixed_jumptypes = JumpProblemNetwork (oscil_rs, nothing , tf, u0, prob, nothing )
110
106
111
107
specs_sym_to_name = Dict (:S1 => " R(a,l)" ,
112
108
:S2 => " L(r)" ,
@@ -158,8 +154,7 @@ prob = DiscreteProblem(rs, u0, (0.0, tf), rates, eval_module = @__MODULE__)
158
154
prob_jump_multistate = JumpProblemNetwork (rs, rates, tf, u0, prob,
159
155
Dict (" specs_to_sym_name" => specs_sym_to_name,
160
156
" rates_sym_to_idx" => rates_sym_to_idx,
161
- " params" => params),
162
- eval_module = @__MODULE__ )
157
+ " params" => params))
163
158
164
159
# generate the network
165
160
N = 10 # number of genes
@@ -217,8 +212,7 @@ prob = DiscreteProblem(rs, u0, (0.0, tf), eval_module = @__MODULE__)
217
212
"The sorting direct method for stochastic simulation of biochemical systems with varying reaction execution behavior"
218
213
Comp. Bio. and Chem., 30, pg. 39-49 (2006).
219
214
"""
220
- prob_jump_twentygenes = JumpProblemNetwork (rs, nothing , tf, u0, prob, nothing ,
221
- eval_module = @__MODULE__ )
215
+ prob_jump_twentygenes = JumpProblemNetwork (rs, nothing , tf, u0, prob, nothing )
222
216
223
217
rn = @reaction_network begin
224
218
c1, G --> G + M
@@ -242,8 +236,7 @@ prob = DiscreteProblem(rn, u0, (0.0, tf), rnpar, eval_module = @__MODULE__)
242
236
Springer (2017).
243
237
"""
244
238
prob_jump_dnadimer_repressor = JumpProblemNetwork (rn, rnpar, tf, u0, prob,
245
- Dict (" specs_names" => varlabels),
246
- eval_module = @__MODULE__ )
239
+ Dict (" specs_names" => varlabels))
247
240
248
241
# diffusion model
249
242
function getDiffNetwork (N)
@@ -271,7 +264,6 @@ tf = 10.0
271
264
network given the number of lattice sites.
272
265
u0 is a similar function that returns the initial condition vector.
273
266
"""
274
- prob_jump_diffnetwork = JumpProblemNetwork (getDiffNetwork, params, tf, getDiffu0, nothing ,
275
- nothing , eval_module = @__MODULE__ )
267
+ prob_jump_diffnetwork = JumpProblemNetwork (getDiffNetwork, params, tf, getDiffu0, nothing )
276
268
277
269
end # module
0 commit comments