@@ -69,7 +69,7 @@ After that, we are ready to check the system for local identifiability:
69
69
``` julia
70
70
# query local identifiability
71
71
# we pass the ode-system
72
- local_id_all = assess_local_identifiability (de, p = 0.99 )
72
+ local_id_all = assess_local_identifiability (de, prob_threshold = 0.99 )
73
73
```
74
74
75
75
We can see that all unknowns (except $x_7$) and all parameters are locally identifiable with probability 0.99.
@@ -78,7 +78,7 @@ Let's try to check specific parameters and their combinations
78
78
79
79
``` julia
80
80
to_check = [de. k5, de. k7, de. k10 / de. k9, de. k5 + de. k6]
81
- local_id_some = assess_local_identifiability (de, funcs_to_check = to_check, p = 0.99 )
81
+ local_id_some = assess_local_identifiability (de, funcs_to_check = to_check, prob_threshold = 0.99 )
82
82
```
83
83
84
84
Notice that in this case, everything (except the unknown variable $x_7$) is locally identifiable, including combinations such as $k_ {10}/k_9, k_5+k_6$
183
183
# check only 2 parameters
184
184
to_check = [ode. b, ode. c]
185
185
186
- global_id = assess_identifiability (ode, funcs_to_check = to_check, p = 0.9 )
186
+ global_id = assess_identifiability (ode, funcs_to_check = to_check, prob_threshold = 0.9 )
187
187
```
188
188
189
189
Both parameters ` b, c ` are globally identifiable with probability ` 0.9 ` in this case.
0 commit comments