@@ -28,7 +28,7 @@ To define the ode system in Julia, we use `ModelingToolkit.jl`.
28
28
29
29
We first define the parameters, variables, differential equations and the output equations.
30
30
31
- ``` @example SI
31
+ ``` julia
32
32
using StructuralIdentifiability, ModelingToolkit
33
33
using ModelingToolkit: t_nounits as t, D_nounits as D
34
34
66
66
67
67
After that, we are ready to check the system for local identifiability:
68
68
69
- ``` @example SI
69
+ ``` julia
70
70
# query local identifiability
71
71
# we pass the ode-system
72
72
local_id_all = assess_local_identifiability (de, p = 0.99 )
@@ -76,7 +76,7 @@ We can see that all unknowns (except $x_7$) and all parameters are locally ident
76
76
77
77
Let's try to check specific parameters and their combinations
78
78
79
- ``` @example SI
79
+ ``` julia
80
80
to_check = [de. k5, de. k7, de. k10 / de. k9, de. k5 + de. k6]
81
81
local_id_some = assess_local_identifiability (de, funcs_to_check = to_check, p = 0.99 )
82
82
```
@@ -103,7 +103,7 @@ We will run a global identifiability check on this enzyme dynamics[^3] model. We
103
103
104
104
Global identifiability needs information about local identifiability first, but the function we chose here will take care of that extra step for us.
105
105
106
- ``` @example SI2
106
+ ``` julia
107
107
using StructuralIdentifiability, ModelingToolkit
108
108
using ModelingToolkit: t_nounits as t, D_nounits as D
109
109
@@ -144,7 +144,7 @@ We can see that only parameters `a, g` are unidentifiable, and everything else c
144
144
145
145
Let us consider the same system but with two inputs, and we will find out identifiability with probability ` 0.9 ` for parameters ` c ` and ` b ` :
146
146
147
- ``` @example SI3
147
+ ``` julia
148
148
using StructuralIdentifiability, ModelingToolkit
149
149
using ModelingToolkit: t_nounits as t, D_nounits as D
150
150
0 commit comments