Skip to content

Commit 82a570f

Browse files
docs: remove StructuralIndentifiability dependency
Doc examples also commented out, to be added when StructuralIndentifiability works with v9
1 parent 0f6931a commit 82a570f

File tree

2 files changed

+5
-7
lines changed

2 files changed

+5
-7
lines changed

docs/Project.toml

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,6 @@ OptimizationOptimJL = "36348300-93cb-4f02-beb5-3c3902f8871e"
1313
OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed"
1414
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
1515
StochasticDiffEq = "789caeaf-c7a9-5a7d-9973-96adeb23e2a0"
16-
StructuralIdentifiability = "220ca800-aa68-49bb-acd8-6037fa93a544"
1716
SymbolicUtils = "d1185830-fcd6-423d-90d6-eec64667417b"
1817
Symbolics = "0c5d862f-8b57-4792-8d23-62f2024744c7"
1918
Unitful = "1986cc42-f94f-5a68-af5c-568840ba703d"
@@ -32,7 +31,6 @@ OptimizationOptimJL = "0.1"
3231
OrdinaryDiffEq = "6.31"
3332
Plots = "1.36"
3433
StochasticDiffEq = "6"
35-
StructuralIdentifiability = "0.4, 0.5"
3634
SymbolicUtils = "1"
3735
Symbolics = "5"
3836
Unitful = "1.12"

docs/src/tutorials/parameter_identifiability.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@ To define the ode system in Julia, we use `ModelingToolkit.jl`.
2828

2929
We first define the parameters, variables, differential equations and the output equations.
3030

31-
```@example SI
31+
```julia
3232
using StructuralIdentifiability, ModelingToolkit
3333
using ModelingToolkit: t_nounits as t, D_nounits as D
3434

@@ -66,7 +66,7 @@ end
6666

6767
After that, we are ready to check the system for local identifiability:
6868

69-
```@example SI
69+
```julia
7070
# query local identifiability
7171
# we pass the ode-system
7272
local_id_all = assess_local_identifiability(de, p = 0.99)
@@ -76,7 +76,7 @@ We can see that all unknowns (except $x_7$) and all parameters are locally ident
7676

7777
Let's try to check specific parameters and their combinations
7878

79-
```@example SI
79+
```julia
8080
to_check = [de.k5, de.k7, de.k10 / de.k9, de.k5 + de.k6]
8181
local_id_some = assess_local_identifiability(de, funcs_to_check = to_check, p = 0.99)
8282
```
@@ -103,7 +103,7 @@ We will run a global identifiability check on this enzyme dynamics[^3] model. We
103103

104104
Global identifiability needs information about local identifiability first, but the function we chose here will take care of that extra step for us.
105105

106-
```@example SI2
106+
```julia
107107
using StructuralIdentifiability, ModelingToolkit
108108
using ModelingToolkit: t_nounits as t, D_nounits as D
109109

@@ -144,7 +144,7 @@ We can see that only parameters `a, g` are unidentifiable, and everything else c
144144

145145
Let us consider the same system but with two inputs, and we will find out identifiability with probability `0.9` for parameters `c` and `b`:
146146

147-
```@example SI3
147+
```julia
148148
using StructuralIdentifiability, ModelingToolkit
149149
using ModelingToolkit: t_nounits as t, D_nounits as D
150150

0 commit comments

Comments
 (0)