|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "pip install -e ." |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "code", |
| 14 | + "execution_count": 2, |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [ |
| 17 | + { |
| 18 | + "name": "stderr", |
| 19 | + "output_type": "stream", |
| 20 | + "text": [ |
| 21 | + "/home/funavry/anaconda3/envs/colscrap-env/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", |
| 22 | + " from .autonotebook import tqdm as notebook_tqdm\n" |
| 23 | + ] |
| 24 | + } |
| 25 | + ], |
| 26 | + "source": [ |
| 27 | + "from scrapegraphai.graphs import SearchGraph" |
| 28 | + ] |
| 29 | + }, |
| 30 | + { |
| 31 | + "cell_type": "code", |
| 32 | + "execution_count": 3, |
| 33 | + "metadata": {}, |
| 34 | + "outputs": [ |
| 35 | + { |
| 36 | + "name": "stdout", |
| 37 | + "output_type": "stream", |
| 38 | + "text": [ |
| 39 | + "PROXY: https://vzktqema:[email protected]:6323\n" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "ename": "TypeError", |
| 44 | + "evalue": "search() got an unexpected keyword argument 'num_results'", |
| 45 | + "output_type": "error", |
| 46 | + "traceback": [ |
| 47 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 48 | + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", |
| 49 | + "Cell \u001b[0;32mIn[3], line 36\u001b[0m\n\u001b[1;32m 31\u001b[0m prompt \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mList the top 5 companies in the world by market capitalization.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 32\u001b[0m search_graph \u001b[38;5;241m=\u001b[39m SearchGraph(\n\u001b[1;32m 33\u001b[0m prompt\u001b[38;5;241m=\u001b[39mprompt,\n\u001b[1;32m 34\u001b[0m config\u001b[38;5;241m=\u001b[39mgraph_config\n\u001b[1;32m 35\u001b[0m )\n\u001b[0;32m---> 36\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43msearch_graph\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", |
| 50 | + "File \u001b[0;32m~/AUK/Colloborations_Scrapegraphai/Scrapegraph-ai/scrapegraphai/graphs/search_graph.py:121\u001b[0m, in \u001b[0;36mSearchGraph.run\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 114\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 115\u001b[0m \u001b[38;5;124;03mExecutes the web scraping and searching process.\u001b[39;00m\n\u001b[1;32m 116\u001b[0m \n\u001b[1;32m 117\u001b[0m \u001b[38;5;124;03mReturns:\u001b[39;00m\n\u001b[1;32m 118\u001b[0m \u001b[38;5;124;03m str: The answer to the prompt.\u001b[39;00m\n\u001b[1;32m 119\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 120\u001b[0m inputs \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124muser_prompt\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprompt}\n\u001b[0;32m--> 121\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfinal_state, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mexecution_info \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgraph\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\u001b[43minputs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 123\u001b[0m \u001b[38;5;66;03m# Store the URLs after execution\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124murls\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfinal_state:\n", |
| 51 | + "File \u001b[0;32m~/AUK/Colloborations_Scrapegraphai/Scrapegraph-ai/scrapegraphai/graphs/base_graph.py:281\u001b[0m, in \u001b[0;36mBaseGraph.execute\u001b[0;34m(self, initial_state)\u001b[0m\n\u001b[1;32m 279\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m (result[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m_state\u001b[39m\u001b[38;5;124m\"\u001b[39m], [])\n\u001b[1;32m 280\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 281\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_execute_standard\u001b[49m\u001b[43m(\u001b[49m\u001b[43minitial_state\u001b[49m\u001b[43m)\u001b[49m\n", |
| 52 | + "File \u001b[0;32m~/AUK/Colloborations_Scrapegraphai/Scrapegraph-ai/scrapegraphai/graphs/base_graph.py:197\u001b[0m, in \u001b[0;36mBaseGraph._execute_standard\u001b[0;34m(self, initial_state)\u001b[0m\n\u001b[1;32m 184\u001b[0m graph_execution_time \u001b[38;5;241m=\u001b[39m time\u001b[38;5;241m.\u001b[39mtime() \u001b[38;5;241m-\u001b[39m start_time\n\u001b[1;32m 185\u001b[0m log_graph_execution(\n\u001b[1;32m 186\u001b[0m graph_name\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgraph_name,\n\u001b[1;32m 187\u001b[0m source\u001b[38;5;241m=\u001b[39msource,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 195\u001b[0m exception\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mstr\u001b[39m(e)\n\u001b[1;32m 196\u001b[0m )\n\u001b[0;32m--> 197\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 198\u001b[0m node_exec_time \u001b[38;5;241m=\u001b[39m time\u001b[38;5;241m.\u001b[39mtime() \u001b[38;5;241m-\u001b[39m curr_time\n\u001b[1;32m 199\u001b[0m total_exec_time \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m node_exec_time\n", |
| 53 | + "File \u001b[0;32m~/AUK/Colloborations_Scrapegraphai/Scrapegraph-ai/scrapegraphai/graphs/base_graph.py:181\u001b[0m, in \u001b[0;36mBaseGraph._execute_standard\u001b[0;34m(self, initial_state)\u001b[0m\n\u001b[1;32m 179\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcallback_manager\u001b[38;5;241m.\u001b[39mexclusive_get_callback(llm_model, llm_model_name) \u001b[38;5;28;01mas\u001b[39;00m cb:\n\u001b[1;32m 180\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 181\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mcurrent_node\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstate\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 182\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 183\u001b[0m error_node \u001b[38;5;241m=\u001b[39m current_node\u001b[38;5;241m.\u001b[39mnode_name\n", |
| 54 | + "File \u001b[0;32m~/AUK/Colloborations_Scrapegraphai/Scrapegraph-ai/scrapegraphai/nodes/search_internet_node.py:97\u001b[0m, in \u001b[0;36mSearchInternetNode.execute\u001b[0;34m(self, state)\u001b[0m\n\u001b[1;32m 93\u001b[0m search_query \u001b[38;5;241m=\u001b[39m search_answer\u001b[38;5;241m.\u001b[39minvoke({\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124muser_prompt\u001b[39m\u001b[38;5;124m\"\u001b[39m: user_prompt})[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 95\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlogger\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSearch Query: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00msearch_query\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m---> 97\u001b[0m answer \u001b[38;5;241m=\u001b[39m \u001b[43msearch_on_web\u001b[49m\u001b[43m(\u001b[49m\u001b[43mquery\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msearch_query\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_results\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmax_results\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 98\u001b[0m \u001b[43m \u001b[49m\u001b[43msearch_engine\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msearch_engine\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mproxy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mproxy\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 100\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(answer) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 101\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mZero results found for the search query.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", |
| 55 | + "File \u001b[0;32m~/AUK/Colloborations_Scrapegraphai/Scrapegraph-ai/scrapegraphai/utils/research_web.py:74\u001b[0m, in \u001b[0;36msearch_on_web\u001b[0;34m(query, search_engine, max_results, port, timeout, proxy)\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPROXY: \u001b[39m\u001b[38;5;124m\"\u001b[39m, proxy)\n\u001b[1;32m 73\u001b[0m res \u001b[38;5;241m=\u001b[39m []\n\u001b[0;32m---> 74\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m url \u001b[38;5;129;01min\u001b[39;00m \u001b[43mgoogle_search\u001b[49m\u001b[43m(\u001b[49m\u001b[43mquery\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_results\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmax_results\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mproxy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproxy\u001b[49m\u001b[43m)\u001b[49m:\n\u001b[1;32m 75\u001b[0m res\u001b[38;5;241m.\u001b[39mappend(url)\n\u001b[1;32m 76\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m filter_pdf_links(res)\n", |
| 56 | + "\u001b[0;31mTypeError\u001b[0m: search() got an unexpected keyword argument 'num_results'" |
| 57 | + ] |
| 58 | + } |
| 59 | + ], |
| 60 | + "source": [ |
| 61 | + "import os\n", |
| 62 | + "os.environ['AZURE_OPENAI_GPT4O_SERVICE']=\"dwtc-openai-gpt4o\"\n", |
| 63 | + "os.environ['AZURE_OPENAI_GPT4O_DEPLOYMENT']=\"gpt4o\"\n", |
| 64 | + "os.environ['AZURE_OPENAI_GPT4O_KEY']=\"3cb3875145ec425880c6974d74e10cd7\"\n", |
| 65 | + "os.environ['AZURE_OPENAI_GPT4O_API_VERSION']=\"2024-02-15-preview\"\n", |
| 66 | + "\n", |
| 67 | + "\n", |
| 68 | + "graph_config = {\n", |
| 69 | + " \"llm\": {\n", |
| 70 | + " \"model\": \"azure_openai/gpt-4o\",\n", |
| 71 | + " \"api_key\": os.environ['AZURE_OPENAI_GPT4O_KEY'],\n", |
| 72 | + " \"azure_endpoint\": f\"https://{os.environ['AZURE_OPENAI_GPT4O_SERVICE']}.openai.azure.com\",\n", |
| 73 | + " \"azure_deployment\": os.environ['AZURE_OPENAI_GPT4O_DEPLOYMENT'],\n", |
| 74 | + " \"api_version\": os.environ['AZURE_OPENAI_GPT4O_API_VERSION'],\n", |
| 75 | + " \"temperature\": 0.0,\n", |
| 76 | + " },\n", |
| 77 | + "\n", |
| 78 | + " \"loader_kwargs\": {\n", |
| 79 | + " \"proxy\" : {\n", |
| 80 | + " \"server\": '63.141.62.30:6323', \n", |
| 81 | + " \"username\": \"vzktqema\", \n", |
| 82 | + " \"password\": \"btngo4nn7n6l\",\n", |
| 83 | + " },\n", |
| 84 | + " },\n", |
| 85 | + "\n", |
| 86 | + " \"verbose\": False,\n", |
| 87 | + " \"headless\": True,\n", |
| 88 | + " \"max_sites\": 1\n", |
| 89 | + " }\n", |
| 90 | + "\n", |
| 91 | + "prompt = \"List the top 5 companies in the world by market capitalization.\"\n", |
| 92 | + "search_graph = SearchGraph(\n", |
| 93 | + " prompt=prompt,\n", |
| 94 | + " config=graph_config\n", |
| 95 | + " )\n", |
| 96 | + "result = search_graph.run()\n" |
| 97 | + ] |
| 98 | + }, |
| 99 | + { |
| 100 | + "cell_type": "code", |
| 101 | + "execution_count": 1, |
| 102 | + "metadata": {}, |
| 103 | + "outputs": [ |
| 104 | + { |
| 105 | + "ename": "ImportError", |
| 106 | + "evalue": "cannot import name 'search' from 'googlesearch' (unknown location)", |
| 107 | + "output_type": "error", |
| 108 | + "traceback": [ |
| 109 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 110 | + "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", |
| 111 | + "Cell \u001b[0;32mIn[1], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mgooglesearch\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m search\n", |
| 112 | + "\u001b[0;31mImportError\u001b[0m: cannot import name 'search' from 'googlesearch' (unknown location)" |
| 113 | + ] |
| 114 | + } |
| 115 | + ], |
| 116 | + "source": [ |
| 117 | + "from googlesearch import search" |
| 118 | + ] |
| 119 | + }, |
| 120 | + { |
| 121 | + "cell_type": "code", |
| 122 | + "execution_count": 8, |
| 123 | + "metadata": {}, |
| 124 | + "outputs": [ |
| 125 | + { |
| 126 | + "name": "stderr", |
| 127 | + "output_type": "stream", |
| 128 | + "text": [ |
| 129 | + "102.77s - pydevd: Sending message related to process being replaced timed-out after 5 seconds\n" |
| 130 | + ] |
| 131 | + }, |
| 132 | + { |
| 133 | + "name": "stdout", |
| 134 | + "output_type": "stream", |
| 135 | + "text": [ |
| 136 | + "Found existing installation: google 3.0.0\n", |
| 137 | + "Uninstalling google-3.0.0:\n", |
| 138 | + " Successfully uninstalled google-3.0.0\n" |
| 139 | + ] |
| 140 | + } |
| 141 | + ], |
| 142 | + "source": [ |
| 143 | + "!pip uninstall google -y" |
| 144 | + ] |
| 145 | + }, |
| 146 | + { |
| 147 | + "cell_type": "code", |
| 148 | + "execution_count": null, |
| 149 | + "metadata": {}, |
| 150 | + "outputs": [], |
| 151 | + "source": [ |
| 152 | + "search()" |
| 153 | + ] |
| 154 | + }, |
| 155 | + { |
| 156 | + "cell_type": "code", |
| 157 | + "execution_count": 4, |
| 158 | + "metadata": {}, |
| 159 | + "outputs": [ |
| 160 | + { |
| 161 | + "data": { |
| 162 | + "text/plain": [ |
| 163 | + "'/home/funavry/anaconda3/envs/colscrap-env/lib/python3.11/site-packages/googlesearch/__init__.py'" |
| 164 | + ] |
| 165 | + }, |
| 166 | + "execution_count": 4, |
| 167 | + "metadata": {}, |
| 168 | + "output_type": "execute_result" |
| 169 | + } |
| 170 | + ], |
| 171 | + "source": [ |
| 172 | + "import inspect\n", |
| 173 | + "inspect.getfile(search)" |
| 174 | + ] |
| 175 | + }, |
| 176 | + { |
| 177 | + "cell_type": "code", |
| 178 | + "execution_count": 1, |
| 179 | + "metadata": {}, |
| 180 | + "outputs": [ |
| 181 | + { |
| 182 | + "ename": "ImportError", |
| 183 | + "evalue": "cannot import name 'search' from 'googlesearch' (unknown location)", |
| 184 | + "output_type": "error", |
| 185 | + "traceback": [ |
| 186 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 187 | + "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", |
| 188 | + "Cell \u001b[0;32mIn[1], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mgooglesearch\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m search\n\u001b[1;32m 2\u001b[0m search(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mGoogle\u001b[39m\u001b[38;5;124m\"\u001b[39m, num_results\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m100\u001b[39m)\n", |
| 189 | + "\u001b[0;31mImportError\u001b[0m: cannot import name 'search' from 'googlesearch' (unknown location)" |
| 190 | + ] |
| 191 | + } |
| 192 | + ], |
| 193 | + "source": [ |
| 194 | + "from googlesearch import search\n", |
| 195 | + "search(\"Google\", num_results=100)" |
| 196 | + ] |
| 197 | + }, |
| 198 | + { |
| 199 | + "cell_type": "code", |
| 200 | + "execution_count": 10, |
| 201 | + "metadata": {}, |
| 202 | + "outputs": [], |
| 203 | + "source": [ |
| 204 | + "from scrapegraphai.utils import research_web" |
| 205 | + ] |
| 206 | + }, |
| 207 | + { |
| 208 | + "cell_type": "code", |
| 209 | + "execution_count": null, |
| 210 | + "metadata": {}, |
| 211 | + "outputs": [], |
| 212 | + "source": [ |
| 213 | + "import concurrent.futures\n", |
| 214 | + "import time\n", |
| 215 | + "from googlesearch import search # Ensure you have the googlesearch package installed\n", |
| 216 | + "\n", |
| 217 | + "def fetch_url(query):\n", |
| 218 | + " # Fetch the URLs from the search query\n", |
| 219 | + " return list(search(query, stop=10)) # Fetch 10 URLs for each query\n", |
| 220 | + "\n", |
| 221 | + "def main():\n", |
| 222 | + " query = \"Weather in Pakistan\"\n", |
| 223 | + " batch_size = 50 # Number of requests to send concurrently\n", |
| 224 | + "\n", |
| 225 | + " res = []\n", |
| 226 | + " # Create a ThreadPoolExecutor to manage threads\n", |
| 227 | + " with concurrent.futures.ThreadPoolExecutor(max_workers=batch_size) as executor:\n", |
| 228 | + " # Submit multiple fetch requests to the executor\n", |
| 229 | + " future_to_url = {executor.submit(fetch_url, query): i for i in range(batch_size)}\n", |
| 230 | + " \n", |
| 231 | + " for future in concurrent.futures.as_completed(future_to_url):\n", |
| 232 | + " try:\n", |
| 233 | + " urls = future.result()\n", |
| 234 | + " res.append(urls) # Extend the results with the fetched URLs\n", |
| 235 | + " except Exception as e:\n", |
| 236 | + " print(f\"Error fetching data: {e}\")\n", |
| 237 | + "\n", |
| 238 | + " return res\n", |
| 239 | + "\n", |
| 240 | + "if __name__ == \"__main__\":\n", |
| 241 | + " result = main()\n", |
| 242 | + " print(len(result))" |
| 243 | + ] |
| 244 | + }, |
| 245 | + { |
| 246 | + "cell_type": "code", |
| 247 | + "execution_count": null, |
| 248 | + "metadata": {}, |
| 249 | + "outputs": [], |
| 250 | + "source": [] |
| 251 | + } |
| 252 | + ], |
| 253 | + "metadata": { |
| 254 | + "kernelspec": { |
| 255 | + "display_name": "colscrap-env", |
| 256 | + "language": "python", |
| 257 | + "name": "python3" |
| 258 | + }, |
| 259 | + "language_info": { |
| 260 | + "codemirror_mode": { |
| 261 | + "name": "ipython", |
| 262 | + "version": 3 |
| 263 | + }, |
| 264 | + "file_extension": ".py", |
| 265 | + "mimetype": "text/x-python", |
| 266 | + "name": "python", |
| 267 | + "nbconvert_exporter": "python", |
| 268 | + "pygments_lexer": "ipython3", |
| 269 | + "version": "3.11.10" |
| 270 | + } |
| 271 | + }, |
| 272 | + "nbformat": 4, |
| 273 | + "nbformat_minor": 2 |
| 274 | +} |
0 commit comments