@@ -73,10 +73,10 @@ namespace StochTree {
73
73
* We assign each leaf node parameter a prior
74
74
*
75
75
* \f[
76
- * \mu \sim \mathcal{N} \left(0, \tau\right)
76
+ * \mu \sim N \left(0, \tau\right)
77
77
* \f]
78
78
*
79
- * Assuming a homoskedastic Gaussian outcome likelihood (i.e. \f$y_i \sim \mathcal{N} \left(f(X_i),\sigma^2\right)\f$),
79
+ * Assuming a homoskedastic Gaussian outcome likelihood (i.e. \f$y_i \sim N \left(f(X_i),\sigma^2\right)\f$),
80
80
* the log marginal likelihood in this model, for the outcome data in node \f$\ell\f$ of tree \f$j\f$ is given by
81
81
*
82
82
* \f[
@@ -106,14 +106,14 @@ namespace StochTree {
106
106
* node \f$\ell\f$'s leaf parameter is similarly defined as:
107
107
*
108
108
* \f[
109
- * \mu_{\ell} \mid - \sim \mathcal{N} \left(\frac{\tau s_{y,\ell}}{n_{\ell} \tau + \sigma^2}, \frac{\tau \sigma^2}{n_{\ell} \tau + \sigma^2}\right)
109
+ * \mu_{\ell} \mid - \sim N \left(\frac{\tau s_{y,\ell}}{n_{\ell} \tau + \sigma^2}, \frac{\tau \sigma^2}{n_{\ell} \tau + \sigma^2}\right)
110
110
* \f]
111
111
*
112
112
* Now, consider the possibility that each observation carries a unique weight \f$w_i\f$. These could be "case weights" in a survey context or
113
113
* individual-level variances ("heteroskedasticity"). These case weights transform the outcome distribution (and associated likelihood) to
114
114
*
115
115
* \f[
116
- * y_i \mid - \sim \mathcal{N} \left(\mu(X_i), \frac{\sigma^2}{w_i}\right)
116
+ * y_i \mid - \sim N \left(\mu(X_i), \frac{\sigma^2}{w_i}\right)
117
117
* \f]
118
118
*
119
119
* This gives a modified log marginal likelihood of
@@ -185,13 +185,13 @@ namespace StochTree {
185
185
* and we assign \f$\beta_{\ell}\f$ a prior of
186
186
*
187
187
* \f[
188
- * \vec{\beta_{\ell}} \sim \mathcal{N} \left(\vec{\beta_0}, \Sigma_0\right)
188
+ * \vec{\beta_{\ell}} \sim N \left(\vec{\beta_0}, \Sigma_0\right)
189
189
* \f]
190
190
*
191
191
* where \f$\vec{\beta_0}\f$ is typically a vector of zeros. The outcome likelihood is still
192
192
*
193
193
* \f[
194
- * y_i \sim \mathcal{N} \left(f(X_i), \sigma^2\right)
194
+ * y_i \sim N \left(f(X_i), \sigma^2\right)
195
195
* \f]
196
196
*
197
197
* This gives a reduced log integrated likelihood of
@@ -203,7 +203,7 @@ namespace StochTree {
203
203
* where \f$\Omega\f$ is a matrix of bases for every observation in leaf \f$\ell\f$ and \f$p\f$ is the dimension of \f$\Omega\f$. The posterior for \f$\vec{\beta_{\ell}}\f$ is
204
204
*
205
205
* \f[
206
- * \vec{\beta_{\ell}} \sim \mathcal{N} \left(\left(\Sigma_0^{-1} + \frac{\Omega'\Omega}{\sigma^2}\right)^{-1}\left(\frac{\Omega'y}{\sigma^2}\right),\left(\Sigma_0^{-1} + \frac{\Omega'\Omega}{\sigma^2}\right)^{-1}\right)
206
+ * \vec{\beta_{\ell}} \sim N \left(\left(\Sigma_0^{-1} + \frac{\Omega'\Omega}{\sigma^2}\right)^{-1}\left(\frac{\Omega'y}{\sigma^2}\right),\left(\Sigma_0^{-1} + \frac{\Omega'\Omega}{\sigma^2}\right)^{-1}\right)
207
207
* \f]
208
208
*
209
209
* This is an extension of the single-tree model of <a href="https://link.springer.com/article/10.1023/A:1013916107446">Chipman et al (2002)</a>, with:
@@ -226,7 +226,7 @@ namespace StochTree {
226
226
* and a posterior for \f$\vec{\beta_{\ell}}\f$ of
227
227
*
228
228
* \f[
229
- * \vec{\beta_{\ell}} \sim \mathcal{N} \left(\left(\Sigma_{0}^{-1} + \Omega'\Sigma_{y}^{-1}\Omega\right)^{-1}\left(\Omega'\Sigma_{y}^{-1}y\right),\left(\Sigma_{0}^{-1} + \Omega'\Sigma_{y}^{-1}\Omega\right)^{-1}\right)
229
+ * \vec{\beta_{\ell}} \sim N \left(\left(\Sigma_{0}^{-1} + \Omega'\Sigma_{y}^{-1}\Omega\right)^{-1}\left(\Omega'\Sigma_{y}^{-1}y\right),\left(\Sigma_{0}^{-1} + \Omega'\Sigma_{y}^{-1}\Omega\right)^{-1}\right)
230
230
* \f]
231
231
*
232
232
* \section gaussian_univariate_regression_leaf_model Gaussian Univariate Regression Leaf Model
@@ -236,7 +236,7 @@ namespace StochTree {
236
236
* parameter becomes univariate normal as in \ref gaussian_constant_leaf_model:
237
237
*
238
238
* \f[
239
- * \beta \sim \mathcal{N} \left(0, \tau\right)
239
+ * \beta \sim N \left(0, \tau\right)
240
240
* \f]
241
241
*
242
242
* Allowing for case / variance weights $w_i$ as above, we derive a reduced log marginal likelihood of
@@ -258,7 +258,7 @@ namespace StochTree {
258
258
* and a posterior of
259
259
*
260
260
* \f[
261
- * \beta_{\ell} \mid - \sim \mathcal{N} \left(\frac{\tau s_{wyx,\ell}}{s_{wxx,\ell} \tau + \sigma^2}, \frac{\tau \sigma^2}{s_{wxx,\ell} \tau + \sigma^2}\right)
261
+ * \beta_{\ell} \mid - \sim N \left(\frac{\tau s_{wyx,\ell}}{s_{wxx,\ell} \tau + \sigma^2}, \frac{\tau \sigma^2}{s_{wxx,\ell} \tau + \sigma^2}\right)
262
262
* \f]
263
263
*
264
264
* \section inverse_gamma_leaf_model Inverse Gamma Leaf Model
@@ -291,7 +291,7 @@ namespace StochTree {
291
291
* Under an outcome model
292
292
*
293
293
* \f[
294
- * y \sim \mathcal{N} \left(f(X), \sigma_0^2 \sigma^2(X)\right)
294
+ * y \sim N \left(f(X), \sigma_0^2 \sigma^2(X)\right)
295
295
* \f]
296
296
*
297
297
* updates to \f$\mu_{\ell}\f$ for a given tree \f$j\f$ are based on a reduced log marginal likelihood of
0 commit comments