|
1 |
| -/* |
2 |
| - In this problem, we want to determine all possible combinations of k |
3 |
| - numbers out of 1 ... n. We use backtracking to solve this problem. |
4 |
| - Time complexity: O(C(n,k)) which is O(n choose k) = O((n!/(k! * (n - k)!))) |
5 |
| -
|
6 |
| - generate_all_combinations(n=4, k=2) => [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]] |
7 |
| -*/ |
8 |
| -pub fn generate_all_combinations(n: i32, k: i32) -> Vec<Vec<i32>> { |
9 |
| - let mut result = vec![]; |
10 |
| - create_all_state(1, n, k, &mut vec![], &mut result); |
11 |
| - |
12 |
| - result |
| 1 | +//! This module provides a function to generate all possible combinations |
| 2 | +//! of `k` numbers out of `0...n-1` using a backtracking algorithm. |
| 3 | +
|
| 4 | +/// Custom error type for combination generation. |
| 5 | +#[derive(Debug, PartialEq)] |
| 6 | +pub enum CombinationError { |
| 7 | + KGreaterThanN, |
| 8 | + InvalidZeroRange, |
| 9 | +} |
| 10 | + |
| 11 | +/// Generates all possible combinations of `k` numbers out of `0...n-1`. |
| 12 | +/// |
| 13 | +/// # Arguments |
| 14 | +/// |
| 15 | +/// * `n` - The upper limit of the range (`0` to `n-1`). |
| 16 | +/// * `k` - The number of elements in each combination. |
| 17 | +/// |
| 18 | +/// # Returns |
| 19 | +/// |
| 20 | +/// A `Result` containing a vector with all possible combinations of `k` numbers out of `0...n-1`, |
| 21 | +/// or a `CombinationError` if the input is invalid. |
| 22 | +pub fn generate_all_combinations(n: usize, k: usize) -> Result<Vec<Vec<usize>>, CombinationError> { |
| 23 | + if n == 0 && k > 0 { |
| 24 | + return Err(CombinationError::InvalidZeroRange); |
| 25 | + } |
| 26 | + |
| 27 | + if k > n { |
| 28 | + return Err(CombinationError::KGreaterThanN); |
| 29 | + } |
| 30 | + |
| 31 | + let mut combinations = vec![]; |
| 32 | + let mut current = vec![0; k]; |
| 33 | + backtrack(0, n, k, 0, &mut current, &mut combinations); |
| 34 | + Ok(combinations) |
13 | 35 | }
|
14 | 36 |
|
15 |
| -fn create_all_state( |
16 |
| - increment: i32, |
17 |
| - total_number: i32, |
18 |
| - level: i32, |
19 |
| - current_list: &mut Vec<i32>, |
20 |
| - total_list: &mut Vec<Vec<i32>>, |
| 37 | +/// Helper function to generate combinations recursively. |
| 38 | +/// |
| 39 | +/// # Arguments |
| 40 | +/// |
| 41 | +/// * `start` - The current number to start the combination with. |
| 42 | +/// * `n` - The upper limit of the range (`0` to `n-1`). |
| 43 | +/// * `k` - The number of elements left to complete the combination. |
| 44 | +/// * `index` - The current index being filled in the combination. |
| 45 | +/// * `current` - A mutable reference to the current combination being constructed. |
| 46 | +/// * `combinations` - A mutable reference to the vector holding all combinations. |
| 47 | +fn backtrack( |
| 48 | + start: usize, |
| 49 | + n: usize, |
| 50 | + k: usize, |
| 51 | + index: usize, |
| 52 | + current: &mut Vec<usize>, |
| 53 | + combinations: &mut Vec<Vec<usize>>, |
21 | 54 | ) {
|
22 |
| - if level == 0 { |
23 |
| - total_list.push(current_list.clone()); |
| 55 | + if index == k { |
| 56 | + combinations.push(current.clone()); |
24 | 57 | return;
|
25 | 58 | }
|
26 | 59 |
|
27 |
| - for i in increment..(total_number - level + 2) { |
28 |
| - current_list.push(i); |
29 |
| - create_all_state(i + 1, total_number, level - 1, current_list, total_list); |
30 |
| - current_list.pop(); |
| 60 | + for num in start..=(n - k + index) { |
| 61 | + current[index] = num; |
| 62 | + backtrack(num + 1, n, k, index + 1, current, combinations); |
31 | 63 | }
|
32 | 64 | }
|
33 | 65 |
|
34 | 66 | #[cfg(test)]
|
35 | 67 | mod tests {
|
36 | 68 | use super::*;
|
37 | 69 |
|
38 |
| - #[test] |
39 |
| - fn test_output() { |
40 |
| - let expected_res = vec![ |
| 70 | + macro_rules! combination_tests { |
| 71 | + ($($name:ident: $test_case:expr,)*) => { |
| 72 | + $( |
| 73 | + #[test] |
| 74 | + fn $name() { |
| 75 | + let (n, k, expected) = $test_case; |
| 76 | + assert_eq!(generate_all_combinations(n, k), expected); |
| 77 | + } |
| 78 | + )* |
| 79 | + } |
| 80 | + } |
| 81 | + |
| 82 | + combination_tests! { |
| 83 | + test_generate_4_2: (4, 2, Ok(vec![ |
| 84 | + vec![0, 1], |
| 85 | + vec![0, 2], |
| 86 | + vec![0, 3], |
41 | 87 | vec![1, 2],
|
42 | 88 | vec![1, 3],
|
43 |
| - vec![1, 4], |
44 | 89 | vec![2, 3],
|
45 |
| - vec![2, 4], |
46 |
| - vec![3, 4], |
47 |
| - ]; |
48 |
| - |
49 |
| - let res = generate_all_combinations(4, 2); |
50 |
| - |
51 |
| - assert_eq!(expected_res, res); |
52 |
| - } |
53 |
| - |
54 |
| - #[test] |
55 |
| - fn test_empty() { |
56 |
| - let expected_res: Vec<Vec<i32>> = vec![vec![]]; |
57 |
| - |
58 |
| - let res = generate_all_combinations(0, 0); |
59 |
| - |
60 |
| - assert_eq!(expected_res, res); |
| 90 | + ])), |
| 91 | + test_generate_4_3: (4, 3, Ok(vec![ |
| 92 | + vec![0, 1, 2], |
| 93 | + vec![0, 1, 3], |
| 94 | + vec![0, 2, 3], |
| 95 | + vec![1, 2, 3], |
| 96 | + ])), |
| 97 | + test_generate_5_3: (5, 3, Ok(vec![ |
| 98 | + vec![0, 1, 2], |
| 99 | + vec![0, 1, 3], |
| 100 | + vec![0, 1, 4], |
| 101 | + vec![0, 2, 3], |
| 102 | + vec![0, 2, 4], |
| 103 | + vec![0, 3, 4], |
| 104 | + vec![1, 2, 3], |
| 105 | + vec![1, 2, 4], |
| 106 | + vec![1, 3, 4], |
| 107 | + vec![2, 3, 4], |
| 108 | + ])), |
| 109 | + test_generate_5_1: (5, 1, Ok(vec![ |
| 110 | + vec![0], |
| 111 | + vec![1], |
| 112 | + vec![2], |
| 113 | + vec![3], |
| 114 | + vec![4], |
| 115 | + ])), |
| 116 | + test_empty: (0, 0, Ok(vec![vec![]])), |
| 117 | + test_generate_n_eq_k: (3, 3, Ok(vec![ |
| 118 | + vec![0, 1, 2], |
| 119 | + ])), |
| 120 | + test_generate_k_greater_than_n: (3, 4, Err(CombinationError::KGreaterThanN)), |
| 121 | + test_zero_range_with_nonzero_k: (0, 1, Err(CombinationError::InvalidZeroRange)), |
61 | 122 | }
|
62 | 123 | }
|
0 commit comments