|
| 1 | +//! This module provides an implementation of a binary search algorithm that |
| 2 | +//! works for both ascending and descending ordered arrays. The binary search |
| 3 | +//! function returns the index of the target element if it is found, or `None` |
| 4 | +//! if the target is not present in the array. |
| 5 | +
|
1 | 6 | use std::cmp::Ordering;
|
2 | 7 |
|
| 8 | +/// Performs a binary search for a specified item within a sorted array. |
| 9 | +/// |
| 10 | +/// This function can handle both ascending and descending ordered arrays. It |
| 11 | +/// takes a reference to the item to search for and a slice of the array. If |
| 12 | +/// the item is found, it returns the index of the item within the array. If |
| 13 | +/// the item is not found, it returns `None`. |
| 14 | +/// |
| 15 | +/// # Parameters |
| 16 | +/// |
| 17 | +/// - `item`: A reference to the item to search for. |
| 18 | +/// - `arr`: A slice of the sorted array in which to search. |
| 19 | +/// |
| 20 | +/// # Returns |
| 21 | +/// |
| 22 | +/// An `Option<usize>` which is: |
| 23 | +/// - `Some(index)` if the item is found at the given index. |
| 24 | +/// - `None` if the item is not found in the array. |
3 | 25 | pub fn binary_search<T: Ord>(item: &T, arr: &[T]) -> Option<usize> {
|
4 |
| - let mut is_asc = true; |
5 |
| - if arr.len() > 1 { |
6 |
| - is_asc = arr[0] < arr[arr.len() - 1]; |
7 |
| - } |
| 26 | + let is_asc = is_asc_arr(arr); |
| 27 | + |
8 | 28 | let mut left = 0;
|
9 | 29 | let mut right = arr.len();
|
10 | 30 |
|
11 | 31 | while left < right {
|
12 |
| - let mid = left + (right - left) / 2; |
13 |
| - |
14 |
| - if is_asc { |
15 |
| - match item.cmp(&arr[mid]) { |
16 |
| - Ordering::Less => right = mid, |
17 |
| - Ordering::Equal => return Some(mid), |
18 |
| - Ordering::Greater => left = mid + 1, |
19 |
| - } |
20 |
| - } else { |
21 |
| - match item.cmp(&arr[mid]) { |
22 |
| - Ordering::Less => left = mid + 1, |
23 |
| - Ordering::Equal => return Some(mid), |
24 |
| - Ordering::Greater => right = mid, |
25 |
| - } |
| 32 | + if match_compare(item, arr, &mut left, &mut right, is_asc) { |
| 33 | + return Some(left); |
26 | 34 | }
|
27 | 35 | }
|
| 36 | + |
28 | 37 | None
|
29 | 38 | }
|
30 | 39 |
|
31 |
| -#[cfg(test)] |
32 |
| -mod tests { |
33 |
| - use super::*; |
34 |
| - |
35 |
| - #[test] |
36 |
| - fn empty() { |
37 |
| - let index = binary_search(&"a", &[]); |
38 |
| - assert_eq!(index, None); |
39 |
| - } |
40 |
| - |
41 |
| - #[test] |
42 |
| - fn one_item() { |
43 |
| - let index = binary_search(&"a", &["a"]); |
44 |
| - assert_eq!(index, Some(0)); |
45 |
| - } |
46 |
| - |
47 |
| - #[test] |
48 |
| - fn search_strings_asc() { |
49 |
| - let index = binary_search(&"a", &["a", "b", "c", "d", "google", "zoo"]); |
50 |
| - assert_eq!(index, Some(0)); |
51 |
| - |
52 |
| - let index = binary_search(&"google", &["a", "b", "c", "d", "google", "zoo"]); |
53 |
| - assert_eq!(index, Some(4)); |
54 |
| - } |
55 |
| - |
56 |
| - #[test] |
57 |
| - fn search_strings_desc() { |
58 |
| - let index = binary_search(&"a", &["zoo", "google", "d", "c", "b", "a"]); |
59 |
| - assert_eq!(index, Some(5)); |
60 |
| - |
61 |
| - let index = binary_search(&"zoo", &["zoo", "google", "d", "c", "b", "a"]); |
62 |
| - assert_eq!(index, Some(0)); |
63 |
| - |
64 |
| - let index = binary_search(&"google", &["zoo", "google", "d", "c", "b", "a"]); |
65 |
| - assert_eq!(index, Some(1)); |
66 |
| - } |
67 |
| - |
68 |
| - #[test] |
69 |
| - fn search_ints_asc() { |
70 |
| - let index = binary_search(&4, &[1, 2, 3, 4]); |
71 |
| - assert_eq!(index, Some(3)); |
72 |
| - |
73 |
| - let index = binary_search(&3, &[1, 2, 3, 4]); |
74 |
| - assert_eq!(index, Some(2)); |
75 |
| - |
76 |
| - let index = binary_search(&2, &[1, 2, 3, 4]); |
77 |
| - assert_eq!(index, Some(1)); |
78 |
| - |
79 |
| - let index = binary_search(&1, &[1, 2, 3, 4]); |
80 |
| - assert_eq!(index, Some(0)); |
| 40 | +/// Compares the item with the middle element of the current search range and |
| 41 | +/// updates the search bounds accordingly. This function handles both ascending |
| 42 | +/// and descending ordered arrays. It calculates the middle index of the |
| 43 | +/// current search range and compares the item with the element at |
| 44 | +/// this index. It then updates the search bounds (`left` and `right`) based on |
| 45 | +/// the result of this comparison. If the item is found, it updates `left` to |
| 46 | +/// the index of the found item and returns `true`. |
| 47 | +/// |
| 48 | +/// # Parameters |
| 49 | +/// |
| 50 | +/// - `item`: A reference to the item to search for. |
| 51 | +/// - `arr`: A slice of the array in which to search. |
| 52 | +/// - `left`: A mutable reference to the left bound of the search range. |
| 53 | +/// - `right`: A mutable reference to the right bound of the search range. |
| 54 | +/// - `is_asc`: A boolean indicating whether the array is sorted in ascending order. |
| 55 | +/// |
| 56 | +/// # Returns |
| 57 | +/// |
| 58 | +/// A `bool` indicating whether the item was found. |
| 59 | +fn match_compare<T: Ord>( |
| 60 | + item: &T, |
| 61 | + arr: &[T], |
| 62 | + left: &mut usize, |
| 63 | + right: &mut usize, |
| 64 | + is_asc: bool, |
| 65 | +) -> bool { |
| 66 | + let mid = *left + (*right - *left) / 2; |
| 67 | + let cmp_result = item.cmp(&arr[mid]); |
| 68 | + |
| 69 | + match (is_asc, cmp_result) { |
| 70 | + (true, Ordering::Less) | (false, Ordering::Greater) => { |
| 71 | + *right = mid; |
| 72 | + } |
| 73 | + (true, Ordering::Greater) | (false, Ordering::Less) => { |
| 74 | + *left = mid + 1; |
| 75 | + } |
| 76 | + (_, Ordering::Equal) => { |
| 77 | + *left = mid; |
| 78 | + return true; |
| 79 | + } |
81 | 80 | }
|
82 | 81 |
|
83 |
| - #[test] |
84 |
| - fn search_ints_desc() { |
85 |
| - let index = binary_search(&4, &[4, 3, 2, 1]); |
86 |
| - assert_eq!(index, Some(0)); |
| 82 | + false |
| 83 | +} |
87 | 84 |
|
88 |
| - let index = binary_search(&3, &[4, 3, 2, 1]); |
89 |
| - assert_eq!(index, Some(1)); |
| 85 | +/// Determines if the given array is sorted in ascending order. |
| 86 | +/// |
| 87 | +/// This helper function checks if the first element of the array is less than the |
| 88 | +/// last element, indicating an ascending order. It returns `false` if the array |
| 89 | +/// has fewer than two elements. |
| 90 | +/// |
| 91 | +/// # Parameters |
| 92 | +/// |
| 93 | +/// - `arr`: A slice of the array to check. |
| 94 | +/// |
| 95 | +/// # Returns |
| 96 | +/// |
| 97 | +/// A `bool` indicating whether the array is sorted in ascending order. |
| 98 | +fn is_asc_arr<T: Ord>(arr: &[T]) -> bool { |
| 99 | + arr.len() > 1 && arr[0] < arr[arr.len() - 1] |
| 100 | +} |
90 | 101 |
|
91 |
| - let index = binary_search(&2, &[4, 3, 2, 1]); |
92 |
| - assert_eq!(index, Some(2)); |
| 102 | +#[cfg(test)] |
| 103 | +mod tests { |
| 104 | + use super::*; |
93 | 105 |
|
94 |
| - let index = binary_search(&1, &[4, 3, 2, 1]); |
95 |
| - assert_eq!(index, Some(3)); |
| 106 | + macro_rules! test_cases { |
| 107 | + ($($name:ident: $test_case:expr,)*) => { |
| 108 | + $( |
| 109 | + #[test] |
| 110 | + fn $name() { |
| 111 | + let (item, arr, expected) = $test_case; |
| 112 | + assert_eq!(binary_search(&item, arr), expected); |
| 113 | + } |
| 114 | + )* |
| 115 | + }; |
96 | 116 | }
|
97 | 117 |
|
98 |
| - #[test] |
99 |
| - fn not_found() { |
100 |
| - let index = binary_search(&5, &[1, 2, 3, 4]); |
101 |
| - assert_eq!(index, None); |
102 |
| - |
103 |
| - let index = binary_search(&5, &[4, 3, 2, 1]); |
104 |
| - assert_eq!(index, None); |
| 118 | + test_cases! { |
| 119 | + empty: ("a", &[] as &[&str], None), |
| 120 | + one_item_found: ("a", &["a"], Some(0)), |
| 121 | + one_item_not_found: ("b", &["a"], None), |
| 122 | + search_strings_asc_start: ("a", &["a", "b", "c", "d", "google", "zoo"], Some(0)), |
| 123 | + search_strings_asc_middle: ("google", &["a", "b", "c", "d", "google", "zoo"], Some(4)), |
| 124 | + search_strings_asc_last: ("zoo", &["a", "b", "c", "d", "google", "zoo"], Some(5)), |
| 125 | + search_strings_asc_not_found: ("x", &["a", "b", "c", "d", "google", "zoo"], None), |
| 126 | + search_strings_desc_start: ("zoo", &["zoo", "google", "d", "c", "b", "a"], Some(0)), |
| 127 | + search_strings_desc_middle: ("google", &["zoo", "google", "d", "c", "b", "a"], Some(1)), |
| 128 | + search_strings_desc_last: ("a", &["zoo", "google", "d", "c", "b", "a"], Some(5)), |
| 129 | + search_strings_desc_not_found: ("x", &["zoo", "google", "d", "c", "b", "a"], None), |
| 130 | + search_ints_asc_start: (1, &[1, 2, 3, 4], Some(0)), |
| 131 | + search_ints_asc_middle: (3, &[1, 2, 3, 4], Some(2)), |
| 132 | + search_ints_asc_end: (4, &[1, 2, 3, 4], Some(3)), |
| 133 | + search_ints_asc_not_found: (5, &[1, 2, 3, 4], None), |
| 134 | + search_ints_desc_start: (4, &[4, 3, 2, 1], Some(0)), |
| 135 | + search_ints_desc_middle: (3, &[4, 3, 2, 1], Some(1)), |
| 136 | + search_ints_desc_end: (1, &[4, 3, 2, 1], Some(3)), |
| 137 | + search_ints_desc_not_found: (5, &[4, 3, 2, 1], None), |
| 138 | + with_gaps_0: (0, &[1, 3, 8, 11], None), |
| 139 | + with_gaps_1: (1, &[1, 3, 8, 11], Some(0)), |
| 140 | + with_gaps_2: (2, &[1, 3, 8, 11], None), |
| 141 | + with_gaps_3: (3, &[1, 3, 8, 11], Some(1)), |
| 142 | + with_gaps_4: (4, &[1, 3, 8, 10], None), |
| 143 | + with_gaps_5: (5, &[1, 3, 8, 10], None), |
| 144 | + with_gaps_6: (6, &[1, 3, 8, 10], None), |
| 145 | + with_gaps_7: (7, &[1, 3, 8, 11], None), |
| 146 | + with_gaps_8: (8, &[1, 3, 8, 11], Some(2)), |
| 147 | + with_gaps_9: (9, &[1, 3, 8, 11], None), |
| 148 | + with_gaps_10: (10, &[1, 3, 8, 11], None), |
| 149 | + with_gaps_11: (11, &[1, 3, 8, 11], Some(3)), |
| 150 | + with_gaps_12: (12, &[1, 3, 8, 11], None), |
| 151 | + with_gaps_13: (13, &[1, 3, 8, 11], None), |
105 | 152 | }
|
106 | 153 | }
|
0 commit comments