|
| 1 | +pub fn euler_totient(n: u64) -> u64 { |
| 2 | + let mut result = n; |
| 3 | + let mut num = n; |
| 4 | + let mut p = 2; |
| 5 | + |
| 6 | + // Find all prime factors and apply formula |
| 7 | + while p * p <= num { |
| 8 | + // Check if p is a divisor of n |
| 9 | + if num % p == 0 { |
| 10 | + // If yes, then it is a prime factor |
| 11 | + // Apply the formula: result = result * (1 - 1/p) |
| 12 | + while num % p == 0 { |
| 13 | + num /= p; |
| 14 | + } |
| 15 | + result -= result / p; |
| 16 | + } |
| 17 | + p += 1; |
| 18 | + } |
| 19 | + |
| 20 | + // If num > 1, then it is a prime factor |
| 21 | + if num > 1 { |
| 22 | + result -= result / num; |
| 23 | + } |
| 24 | + |
| 25 | + result |
| 26 | +} |
| 27 | + |
| 28 | +#[cfg(test)] |
| 29 | +mod tests { |
| 30 | + use super::*; |
| 31 | + macro_rules! test_euler_totient { |
| 32 | + ($($name:ident: $test_case:expr,)*) => { |
| 33 | + $( |
| 34 | + #[test] |
| 35 | + fn $name() { |
| 36 | + let (input, expected) = $test_case; |
| 37 | + assert_eq!(euler_totient(input), expected) |
| 38 | + } |
| 39 | + )* |
| 40 | + }; |
| 41 | + } |
| 42 | + |
| 43 | + test_euler_totient! { |
| 44 | + prime_2: (2, 1), |
| 45 | + prime_3: (3, 2), |
| 46 | + prime_5: (5, 4), |
| 47 | + prime_7: (7, 6), |
| 48 | + prime_11: (11, 10), |
| 49 | + prime_13: (13, 12), |
| 50 | + prime_17: (17, 16), |
| 51 | + prime_19: (19, 18), |
| 52 | + |
| 53 | + composite_6: (6, 2), // 2 * 3 |
| 54 | + composite_10: (10, 4), // 2 * 5 |
| 55 | + composite_15: (15, 8), // 3 * 5 |
| 56 | + composite_12: (12, 4), // 2^2 * 3 |
| 57 | + composite_18: (18, 6), // 2 * 3^2 |
| 58 | + composite_20: (20, 8), // 2^2 * 5 |
| 59 | + composite_30: (30, 8), // 2 * 3 * 5 |
| 60 | + |
| 61 | + prime_power_2_to_2: (4, 2), |
| 62 | + prime_power_2_to_3: (8, 4), |
| 63 | + prime_power_3_to_2: (9, 6), |
| 64 | + prime_power_2_to_4: (16, 8), |
| 65 | + prime_power_5_to_2: (25, 20), |
| 66 | + prime_power_3_to_3: (27, 18), |
| 67 | + prime_power_2_to_5: (32, 16), |
| 68 | + |
| 69 | + // Large numbers |
| 70 | + large_50: (50, 20), // 2 * 5^2 |
| 71 | + large_100: (100, 40), // 2^2 * 5^2 |
| 72 | + large_1000: (1000, 400), // 2^3 * 5^3 |
| 73 | + } |
| 74 | +} |
0 commit comments