-
Notifications
You must be signed in to change notification settings - Fork 178
reproduce phyloseq example using ggtree
Guangchuang Yu edited this page Sep 2, 2015
·
5 revisions
This example is demonstrated in phyloseq
vignette.
require(phyloseq)
data(GlobalPatterns)
GP <- prune_taxa(taxa_sums(GlobalPatterns) > 0, GlobalPatterns)
GP.chl <- subset_taxa(GP, Phylum=="Chlamydiae")
plot_tree(GP.chl, color="SampleType", shape="Family", label.tips="Genus", size="Abundance")
require(ggplot2)
require(ggtree)
tree <- GP.chl@phy_tree
p <- ggtree(tree, ladderize = F)
p <- p + geom_text(subset=.(!isTip), aes(label=label), hjust=-.2, size=4)
dd <- psmelt(GP.chl)
dd <- dd[dd$Abundance > 0, ]
data <- merge(p$data, dd, by.x="label", by.y="OTU")
spacing <- 0.02
idx <- with(data, sapply(table(node)[unique(node)], function(i) 1:i)) %>% unlist
hjust <- spacing * idx * max(data$x)
data$xdodge <- data$x + hjust
p <- p + geom_point(data=data, aes(x=xdodge, color=SampleType, shape=Family, size=Abundance), na.rm=T) +
theme(legend.position="right") + scale_size_continuous(trans=log_trans(5))
d2 <- unique(data[, c("x", "y", "Genus")])
p + geom_text(data=d2, aes(label=Genus), hjust=-.3, na.rm=T, size=4)
Although Abundance
points were adjusted to prevent overlap, it's hard to detect pattern in this figure.
We believe using gheatmap
is more easy to interpret the data.
We can also use dots to encode more information with aligning them vertically by SampleType
. This is a better way and more easy to interpret.
require(microbenchmark)
draw_ggtree <- function(phyloseq) {
tree <- phyloseq@phy_tree
p <- ggtree(tree, ladderize = F)
p <- p + geom_text(subset=.(!isTip), aes(label=label), hjust=-.2, size=4)
dd <- psmelt(phyloseq)
dd <- dd[dd$Abundance > 0, ]
data <- merge(p$data, dd, by.x="label", by.y="OTU")
spacing <- 0.02
idx <- with(data, sapply(table(node)[unique(node)], function(i) 1:i)) %>% unlist
hjust <- spacing * idx * max(data$x)
data$xdodge <- data$x + hjust
p <- p + geom_point(data=data, aes(x=xdodge, color=SampleType, shape=Family, size=Abundance), na.rm=T) +
theme(legend.position="right") + scale_size_continuous(trans=log_trans(5))
d2 <- unique(data[, c("x", "y", "Genus")])
p + geom_text(data=d2, aes(label=Genus), hjust=-.3, na.rm=T, size=4)
}
bm <- microbenchmark(
phyloseq = plot_tree(GP.chl, color="SampleType", shape="Family", label.tips="Genus", size="Abundance"),
ggtree = draw_ggtree(GP.chl),
times=100L
)
print(bm)
## Unit: milliseconds
## expr min lq mean median uq max neval
## phyloseq 83.21494 85.46983 92.35073 87.90121 91.56879 402.5652 100
## ggtree 76.07785 77.71069 80.66713 79.44528 83.01084 91.1686 100