|
| 1 | +/* |
| 2 | + * This file is part of the MicroPython project, http://micropython.org/ |
| 3 | + * |
| 4 | + * The MIT License (MIT) |
| 5 | + * |
| 6 | + * Copyright (c) 2021 Scott Shawcroft for Adafruit Industries |
| 7 | + * |
| 8 | + * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 9 | + * of this software and associated documentation files (the "Software"), to deal |
| 10 | + * in the Software without restriction, including without limitation the rights |
| 11 | + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 12 | + * copies of the Software, and to permit persons to whom the Software is |
| 13 | + * furnished to do so, subject to the following conditions: |
| 14 | + * |
| 15 | + * The above copyright notice and this permission notice shall be included in |
| 16 | + * all copies or substantial portions of the Software. |
| 17 | + * |
| 18 | + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 19 | + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 20 | + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 21 | + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 22 | + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 23 | + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 24 | + * THE SOFTWARE. |
| 25 | + */ |
| 26 | + |
| 27 | +#include "audio_dma.h" |
| 28 | + |
| 29 | +#include "shared-bindings/audiocore/RawSample.h" |
| 30 | +#include "shared-bindings/audiocore/WaveFile.h" |
| 31 | +#include "supervisor/background_callback.h" |
| 32 | + |
| 33 | +#include "py/mpstate.h" |
| 34 | +#include "py/runtime.h" |
| 35 | + |
| 36 | +#include "src/rp2_common/hardware_irq/include/hardware/irq.h" |
| 37 | + |
| 38 | +#if CIRCUITPY_AUDIOPWMIO || CIRCUITPY_AUDIOBUSIO |
| 39 | + |
| 40 | +#define AUDIO_DMA_CHANNEL_COUNT NUM_DMA_CHANNELS |
| 41 | + |
| 42 | +void audio_dma_convert_signed(audio_dma_t* dma, uint8_t* buffer, uint32_t buffer_length, |
| 43 | + uint8_t** output_buffer, uint32_t* output_buffer_length) { |
| 44 | + if (dma->first_buffer_free) { |
| 45 | + *output_buffer = dma->first_buffer; |
| 46 | + } else { |
| 47 | + *output_buffer = dma->second_buffer; |
| 48 | + } |
| 49 | + #pragma GCC diagnostic push |
| 50 | + #pragma GCC diagnostic ignored "-Wcast-align" |
| 51 | + if (dma->signed_to_unsigned || |
| 52 | + dma->unsigned_to_signed || |
| 53 | + dma->sample_spacing > 1 || |
| 54 | + (dma->sample_resolution != dma->output_resolution)) { |
| 55 | + *output_buffer_length = buffer_length / dma->sample_spacing; |
| 56 | + uint32_t out_i = 0; |
| 57 | + if (dma->sample_resolution <= 8 && dma->output_resolution > 8) { |
| 58 | + size_t shift = dma->output_resolution - dma->sample_resolution; |
| 59 | + |
| 60 | + for (uint32_t i = 0; i < buffer_length; i += dma->sample_spacing) { |
| 61 | + if (dma->signed_to_unsigned) { |
| 62 | + ((uint16_t*) *output_buffer)[out_i] = ((uint16_t) ((int8_t*) buffer)[i] + 0x80) << shift; |
| 63 | + } else if (dma->unsigned_to_signed) { |
| 64 | + ((int16_t*) *output_buffer)[out_i] = ((int16_t) ((uint8_t*) buffer)[i] - 0x80) << shift; |
| 65 | + } else { |
| 66 | + ((uint16_t*) *output_buffer)[out_i] = ((uint16_t) ((uint8_t*) buffer)[i]) << shift; |
| 67 | + } |
| 68 | + out_i += 1; |
| 69 | + } |
| 70 | + } else if (dma->sample_resolution <= 8 && dma->output_resolution <= 8) { |
| 71 | + for (uint32_t i = 0; i < buffer_length; i += dma->sample_spacing) { |
| 72 | + if (dma->signed_to_unsigned) { |
| 73 | + ((uint8_t*) *output_buffer)[out_i] = ((int8_t*) buffer)[i] + 0x80; |
| 74 | + } else if (dma->unsigned_to_signed) { |
| 75 | + ((int8_t*) *output_buffer)[out_i] = ((uint8_t*) buffer)[i] - 0x80; |
| 76 | + } else { |
| 77 | + ((uint8_t*) *output_buffer)[out_i] = ((uint8_t*) buffer)[i]; |
| 78 | + } |
| 79 | + out_i += 1; |
| 80 | + } |
| 81 | + } else if (dma->sample_resolution > 8 && dma->output_resolution > 8) { |
| 82 | + size_t shift = 16 - dma->output_resolution; |
| 83 | + for (uint32_t i = 0; i < buffer_length / 2; i += dma->sample_spacing) { |
| 84 | + if (dma->signed_to_unsigned) { |
| 85 | + ((uint16_t*) *output_buffer)[out_i] = ((int16_t*) buffer)[i] + 0x8000; |
| 86 | + } else if (dma->unsigned_to_signed) { |
| 87 | + ((int16_t*) *output_buffer)[out_i] = ((uint16_t*) buffer)[i] - 0x8000; |
| 88 | + } else { |
| 89 | + ((uint16_t*) *output_buffer)[out_i] = ((uint16_t*) buffer)[i]; |
| 90 | + } |
| 91 | + if (dma->output_resolution < 16) { |
| 92 | + if (dma->output_signed) { |
| 93 | + ((int16_t*) *output_buffer)[out_i] = ((int16_t*) *output_buffer)[out_i] >> shift; |
| 94 | + } else { |
| 95 | + ((uint16_t*) *output_buffer)[out_i] = ((uint16_t*) *output_buffer)[out_i] >> shift; |
| 96 | + } |
| 97 | + } |
| 98 | + out_i += 1; |
| 99 | + } |
| 100 | + } |
| 101 | + } else { |
| 102 | + *output_buffer = buffer; |
| 103 | + *output_buffer_length = buffer_length; |
| 104 | + } |
| 105 | + #pragma GCC diagnostic pop |
| 106 | + dma->first_buffer_free = !dma->first_buffer_free; |
| 107 | +} |
| 108 | + |
| 109 | +void audio_dma_load_next_block(audio_dma_t* dma) { |
| 110 | + uint8_t dma_channel = dma->channel[1]; |
| 111 | + if (dma->first_channel_free) { |
| 112 | + dma_channel = dma->channel[0]; |
| 113 | + } |
| 114 | + dma->first_channel_free = !dma->first_channel_free; |
| 115 | + |
| 116 | + uint8_t* output_buffer; |
| 117 | + uint32_t output_buffer_length; |
| 118 | + audioio_get_buffer_result_t get_buffer_result; |
| 119 | + uint8_t* buffer; |
| 120 | + uint32_t buffer_length; |
| 121 | + get_buffer_result = audiosample_get_buffer(dma->sample, |
| 122 | + dma->single_channel, dma->audio_channel, &buffer, &buffer_length); |
| 123 | + |
| 124 | + if (get_buffer_result == GET_BUFFER_ERROR) { |
| 125 | + audio_dma_stop(dma); |
| 126 | + return; |
| 127 | + } |
| 128 | + |
| 129 | + audio_dma_convert_signed(dma, buffer, buffer_length, &output_buffer, &output_buffer_length); |
| 130 | + |
| 131 | + // If we don't have an output buffer, save the pointer to first_buffer for use in the single |
| 132 | + // buffer special case. |
| 133 | + if (dma->first_buffer == NULL) { |
| 134 | + dma->first_buffer = output_buffer; |
| 135 | + } |
| 136 | + |
| 137 | + dma_channel_set_trans_count(dma_channel, output_buffer_length / dma->output_size, false /* trigger */); |
| 138 | + dma_channel_set_read_addr(dma_channel, output_buffer, false /* trigger */); |
| 139 | + if (get_buffer_result == GET_BUFFER_DONE) { |
| 140 | + if (dma->loop) { |
| 141 | + audiosample_reset_buffer(dma->sample, dma->single_channel, dma->audio_channel); |
| 142 | + } else { |
| 143 | + // Set channel trigger to ourselves so we don't keep going. |
| 144 | + dma_channel_hw_t* c = &dma_hw->ch[dma_channel]; |
| 145 | + c->al1_ctrl = (c->al1_ctrl & ~DMA_CH0_CTRL_TRIG_CHAIN_TO_BITS) | (dma_channel << DMA_CH0_CTRL_TRIG_CHAIN_TO_LSB); |
| 146 | + } |
| 147 | + } |
| 148 | +} |
| 149 | + |
| 150 | +// Playback should be shutdown before calling this. |
| 151 | +audio_dma_result audio_dma_setup_playback(audio_dma_t* dma, |
| 152 | + mp_obj_t sample, |
| 153 | + bool loop, |
| 154 | + bool single_channel, |
| 155 | + uint8_t audio_channel, |
| 156 | + bool output_signed, |
| 157 | + uint8_t output_resolution, |
| 158 | + uint32_t output_register_address, |
| 159 | + uint8_t dma_trigger_source) { |
| 160 | + // Use two DMA channels to because the DMA can't wrap to itself without the |
| 161 | + // buffer being power of two aligned. |
| 162 | + dma->channel[0] = dma_claim_unused_channel(false); |
| 163 | + dma->channel[1] = dma_claim_unused_channel(false); |
| 164 | + if (dma->channel[0] == NUM_DMA_CHANNELS || dma->channel[1] == NUM_DMA_CHANNELS) { |
| 165 | + if (dma->channel[0] < NUM_DMA_CHANNELS) { |
| 166 | + dma_channel_unclaim(dma->channel[0]); |
| 167 | + } |
| 168 | + return AUDIO_DMA_DMA_BUSY; |
| 169 | + } |
| 170 | + |
| 171 | + dma->sample = sample; |
| 172 | + dma->loop = loop; |
| 173 | + dma->single_channel = single_channel; |
| 174 | + dma->audio_channel = audio_channel; |
| 175 | + dma->signed_to_unsigned = false; |
| 176 | + dma->unsigned_to_signed = false; |
| 177 | + dma->output_signed = output_signed; |
| 178 | + dma->sample_spacing = 1; |
| 179 | + dma->first_channel_free = true; |
| 180 | + dma->output_resolution = output_resolution; |
| 181 | + dma->sample_resolution = audiosample_bits_per_sample(sample); |
| 182 | + audiosample_reset_buffer(sample, single_channel, audio_channel); |
| 183 | + |
| 184 | + bool single_buffer; |
| 185 | + bool samples_signed; |
| 186 | + uint32_t max_buffer_length; |
| 187 | + audiosample_get_buffer_structure(sample, single_channel, &single_buffer, &samples_signed, |
| 188 | + &max_buffer_length, &dma->sample_spacing); |
| 189 | + |
| 190 | + // Check to see if we have to scale the resolution up. |
| 191 | + if (dma->sample_resolution <= 8 && dma->output_resolution > 8) { |
| 192 | + max_buffer_length *= 2; |
| 193 | + } |
| 194 | + if (output_signed != samples_signed || |
| 195 | + dma->sample_spacing > 1 || |
| 196 | + (dma->sample_resolution != dma->output_resolution)) { |
| 197 | + max_buffer_length /= dma->sample_spacing; |
| 198 | + dma->first_buffer = (uint8_t*) m_realloc(dma->first_buffer, max_buffer_length); |
| 199 | + if (dma->first_buffer == NULL) { |
| 200 | + return AUDIO_DMA_MEMORY_ERROR; |
| 201 | + } |
| 202 | + |
| 203 | + dma->first_buffer_free = true; |
| 204 | + if (!single_buffer) { |
| 205 | + dma->second_buffer = (uint8_t*) m_realloc(dma->second_buffer, max_buffer_length); |
| 206 | + if (dma->second_buffer == NULL) { |
| 207 | + return AUDIO_DMA_MEMORY_ERROR; |
| 208 | + } |
| 209 | + } |
| 210 | + dma->signed_to_unsigned = !output_signed && samples_signed; |
| 211 | + dma->unsigned_to_signed = output_signed && !samples_signed; |
| 212 | + } |
| 213 | + |
| 214 | + if (output_resolution > 8) { |
| 215 | + dma->output_size = 2; |
| 216 | + } else { |
| 217 | + dma->output_size = 1; |
| 218 | + } |
| 219 | + // Transfer both channels at once. |
| 220 | + if (!single_channel && audiosample_channel_count(sample) == 2) { |
| 221 | + dma->output_size *= 2; |
| 222 | + } |
| 223 | + |
| 224 | + enum dma_channel_transfer_size dma_size = DMA_SIZE_8; |
| 225 | + if (dma->output_size == 2) { |
| 226 | + dma_size = DMA_SIZE_16; |
| 227 | + } else if (dma->output_size == 4) { |
| 228 | + dma_size = DMA_SIZE_32; |
| 229 | + } |
| 230 | + |
| 231 | + for (size_t i = 0; i < 2; i++) { |
| 232 | + dma_channel_config c = dma_channel_get_default_config(dma->channel[i]); |
| 233 | + channel_config_set_transfer_data_size(&c, dma_size); |
| 234 | + channel_config_set_dreq(&c, dma_trigger_source); |
| 235 | + channel_config_set_read_increment(&c, true); |
| 236 | + channel_config_set_write_increment(&c, false); |
| 237 | + // Chain to the other channel by default. |
| 238 | + channel_config_set_chain_to(&c, dma->channel[(i + 1) % 2]); |
| 239 | + dma_channel_set_config(dma->channel[i], &c, false /* trigger */); |
| 240 | + dma_channel_set_write_addr(dma->channel[i], (void*) output_register_address, false /* trigger */); |
| 241 | + } |
| 242 | + |
| 243 | + // We keep the audio_dma_t for internal use and the sample as a root pointer because it |
| 244 | + // contains the audiodma structure. |
| 245 | + MP_STATE_PORT(playing_audio)[dma->channel[0]] = dma; |
| 246 | + MP_STATE_PORT(playing_audio)[dma->channel[1]] = dma; |
| 247 | + |
| 248 | + // Load the first two blocks up front. |
| 249 | + audio_dma_load_next_block(dma); |
| 250 | + if (!single_buffer) { |
| 251 | + audio_dma_load_next_block(dma); |
| 252 | + } |
| 253 | + |
| 254 | + // Special case the DMA for a single buffer. It's commonly used for a single wave length of sound |
| 255 | + // and may be short. Therefore, we use DMA chaining to loop quickly without involving interrupts. |
| 256 | + // On the RP2040 we chain by having a second DMA writing to the config registers of the first. |
| 257 | + // Read and write addresses change with DMA so we need to reset the read address back to the |
| 258 | + // start of the sample. |
| 259 | + if (single_buffer) { |
| 260 | + dma_channel_config c = dma_channel_get_default_config(dma->channel[1]); |
| 261 | + channel_config_set_transfer_data_size(&c, DMA_SIZE_32); |
| 262 | + channel_config_set_dreq(&c, 0x3f); // dma as fast as possible |
| 263 | + channel_config_set_read_increment(&c, false); |
| 264 | + channel_config_set_write_increment(&c, false); |
| 265 | + channel_config_set_chain_to(&c, dma->channel[1]); // Chain to ourselves so we stop. |
| 266 | + dma_channel_configure(dma->channel[1], &c, |
| 267 | + &dma_hw->ch[dma->channel[0]].al3_read_addr_trig, // write address |
| 268 | + &dma->first_buffer, // read address |
| 269 | + 1, // transaction count |
| 270 | + false); // trigger |
| 271 | + } else { |
| 272 | + // Enable our DMA channels on DMA0 to the CPU. This will wake us up when |
| 273 | + // we're WFI. |
| 274 | + dma_hw->inte0 |= (1 << dma->channel[0]) | (1 << dma->channel[1]); |
| 275 | + irq_set_mask_enabled(1 << DMA_IRQ_0, true); |
| 276 | + } |
| 277 | + |
| 278 | + dma_channel_start(dma->channel[0]); |
| 279 | + |
| 280 | + return AUDIO_DMA_OK; |
| 281 | +} |
| 282 | + |
| 283 | +void audio_dma_stop(audio_dma_t* dma) { |
| 284 | + // Disable our interrupts. |
| 285 | + dma_hw->inte0 &= ~((1 << dma->channel[0]) | (1 << dma->channel[1])); |
| 286 | + irq_set_mask_enabled(1 << DMA_IRQ_0, false); |
| 287 | + |
| 288 | + // Run any remaining audio tasks because we remove ourselves from |
| 289 | + // playing_audio. |
| 290 | + RUN_BACKGROUND_TASKS; |
| 291 | + |
| 292 | + for (size_t i = 0; i < 2; i++) { |
| 293 | + size_t channel = dma->channel[i]; |
| 294 | + |
| 295 | + if (dma_channel_is_busy(channel)) { |
| 296 | + dma_channel_abort(channel); |
| 297 | + } |
| 298 | + dma_channel_unclaim(channel); |
| 299 | + MP_STATE_PORT(playing_audio)[channel] = NULL; |
| 300 | + dma->channel[i] = NUM_DMA_CHANNELS; |
| 301 | + } |
| 302 | + |
| 303 | + // Hold onto our buffers. |
| 304 | +} |
| 305 | + |
| 306 | +// To pause we simply stop the DMA. It is the responsibility of the output peripheral |
| 307 | +// to hold the previous value. |
| 308 | +void audio_dma_pause(audio_dma_t* dma) { |
| 309 | + dma_hw->ch[dma->channel[0]].al1_ctrl &= ~DMA_CH0_CTRL_TRIG_EN_BITS; |
| 310 | + dma_hw->ch[dma->channel[1]].al1_ctrl &= ~DMA_CH0_CTRL_TRIG_EN_BITS; |
| 311 | +} |
| 312 | + |
| 313 | +void audio_dma_resume(audio_dma_t* dma) { |
| 314 | + // Always re-enable the non-busy channel first so it's ready to continue when the busy channel |
| 315 | + // finishes and chains to it. (An interrupt could make the time between enables long.) |
| 316 | + size_t first = 0; |
| 317 | + size_t second = 1; |
| 318 | + if (dma_channel_is_busy(dma->channel[0])) { |
| 319 | + first = 1; |
| 320 | + second = 0; |
| 321 | + } |
| 322 | + dma_hw->ch[dma->channel[first]].al1_ctrl |= DMA_CH0_CTRL_TRIG_EN_BITS; |
| 323 | + dma_hw->ch[dma->channel[second]].al1_ctrl |= DMA_CH0_CTRL_TRIG_EN_BITS; |
| 324 | +} |
| 325 | + |
| 326 | +bool audio_dma_get_paused(audio_dma_t* dma) { |
| 327 | + if (dma->channel[0] >= AUDIO_DMA_CHANNEL_COUNT) { |
| 328 | + return false; |
| 329 | + } |
| 330 | + uint32_t control = dma_hw->ch[dma->channel[0]].ctrl_trig; |
| 331 | + |
| 332 | + return (control & DMA_CH0_CTRL_TRIG_EN_BITS) == 0; |
| 333 | +} |
| 334 | + |
| 335 | +void audio_dma_init(audio_dma_t* dma) { |
| 336 | + dma->first_buffer = NULL; |
| 337 | + dma->second_buffer = NULL; |
| 338 | +} |
| 339 | + |
| 340 | +void audio_dma_deinit(audio_dma_t* dma) { |
| 341 | + m_free(dma->first_buffer); |
| 342 | + dma->first_buffer = NULL; |
| 343 | + |
| 344 | + m_free(dma->second_buffer); |
| 345 | + dma->second_buffer = NULL; |
| 346 | +} |
| 347 | + |
| 348 | +bool audio_dma_get_playing(audio_dma_t* dma) { |
| 349 | + if (dma->channel[0] == NUM_DMA_CHANNELS) { |
| 350 | + return false; |
| 351 | + } |
| 352 | + if (!dma_channel_is_busy(dma->channel[0]) && |
| 353 | + !dma_channel_is_busy(dma->channel[1])) { |
| 354 | + audio_dma_stop(dma); |
| 355 | + return false; |
| 356 | + } |
| 357 | + |
| 358 | + return true; |
| 359 | +} |
| 360 | + |
| 361 | +// WARN(tannewt): DO NOT print from here, or anything it calls. Printing calls |
| 362 | +// background tasks such as this and causes a stack overflow. |
| 363 | +STATIC void dma_callback_fun(void *arg) { |
| 364 | + audio_dma_t* dma = arg; |
| 365 | + if (dma == NULL) { |
| 366 | + return; |
| 367 | + } |
| 368 | + |
| 369 | + audio_dma_load_next_block(dma); |
| 370 | +} |
| 371 | + |
| 372 | +void isr_dma_0(void) { |
| 373 | + for (size_t i = 0; i < NUM_DMA_CHANNELS; i++) { |
| 374 | + uint32_t mask = 1 << i; |
| 375 | + if ((dma_hw->intr & mask) != 0 && MP_STATE_PORT(playing_audio)[i] != NULL) { |
| 376 | + audio_dma_t* dma = MP_STATE_PORT(playing_audio)[i]; |
| 377 | + background_callback_add(&dma->callback, dma_callback_fun, (void*)dma); |
| 378 | + dma_hw->ints0 = mask; |
| 379 | + } |
| 380 | + } |
| 381 | +} |
| 382 | + |
| 383 | +#endif |
0 commit comments