2
2
import numpy as np
3
3
import tensorflow as tf
4
4
5
- INPUT_TENSOR_NAME = 'x'
6
-
5
+ INPUT_TENSOR_NAME = 'inputs'
7
6
8
7
def estimator_fn (run_config , params ):
9
8
feature_columns = [tf .feature_column .numeric_column (INPUT_TENSOR_NAME , shape = [4 ])]
@@ -12,22 +11,14 @@ def estimator_fn(run_config, params):
12
11
n_classes = 3 ,
13
12
config = run_config )
14
13
15
-
16
14
def serving_input_fn ():
17
15
feature_spec = {INPUT_TENSOR_NAME : tf .FixedLenFeature (dtype = tf .float32 , shape = [4 ])}
18
16
return tf .estimator .export .build_parsing_serving_input_receiver_fn (feature_spec )()
19
17
20
-
21
18
def train_input_fn (training_dir , params ):
22
19
"""Returns input function that would feed the model during training"""
23
20
return _generate_input_fn (training_dir , 'iris_training.csv' )
24
21
25
-
26
- def eval_input_fn (training_dir , params ):
27
- """Returns input function that would feed the model during evaluation"""
28
- return _generate_input_fn (training_dir , 'iris_test.csv' )
29
-
30
-
31
22
def _generate_input_fn (training_dir , training_filename ):
32
23
training_set = tf .contrib .learn .datasets .base .load_csv_with_header (
33
24
filename = os .path .join (training_dir , training_filename ),
@@ -38,4 +29,4 @@ def _generate_input_fn(training_dir, training_filename):
38
29
x = {INPUT_TENSOR_NAME : np .array (training_set .data )},
39
30
y = np .array (training_set .target ),
40
31
num_epochs = None ,
41
- shuffle = True )
32
+ shuffle = True )
0 commit comments