@@ -133,13 +133,13 @@ def _input_from_files(mode, batch_size, data_dir):
133
133
if mode == tf .estimator .ModeKeys .TRAIN :
134
134
dataset = dataset .repeat ()
135
135
136
- dataset = dataset .map (_dataset_parser , num_threads = 1 ,
137
- output_buffer_size = 2 * batch_size )
136
+ dataset = dataset .map (_dataset_parser , num_parallel_calls = 1 )
137
+ dataset . prefetch ( 2 * batch_size )
138
138
139
139
# For training, preprocess the image and shuffle.
140
140
if mode == tf .estimator .ModeKeys .TRAIN :
141
- dataset = dataset .map (_train_preprocess_fn , num_threads = 1 ,
142
- output_buffer_size = 2 * batch_size )
141
+ dataset = dataset .map (_train_preprocess_fn , num_parallel_calls = 1 )
142
+ dataset . prefetch ( 2 * batch_size )
143
143
144
144
# Ensure that the capacity is sufficiently large to provide good random
145
145
# shuffling.
@@ -149,8 +149,8 @@ def _input_from_files(mode, batch_size, data_dir):
149
149
# Subtract off the mean and divide by the variance of the pixels.
150
150
dataset = dataset .map (
151
151
lambda image , label : (tf .image .per_image_standardization (image ), label ),
152
- num_threads = 1 ,
153
- output_buffer_size = 2 * batch_size )
152
+ num_parallel_calls = 1 )
153
+ dataset . prefetch ( 2 * batch_size )
154
154
155
155
# Batch results by up to batch_size, and then fetch the tuple from the
156
156
# iterator.
@@ -203,7 +203,7 @@ def _dataset_parser(value):
203
203
def _record_dataset (filenames ):
204
204
"""Returns an input pipeline Dataset from `filenames`."""
205
205
record_bytes = HEIGHT * WIDTH * DEPTH + 1
206
- return tf .contrib . data .FixedLengthRecordDataset (filenames , record_bytes )
206
+ return tf .data .FixedLengthRecordDataset (filenames , record_bytes )
207
207
208
208
209
209
def _filenames (mode , data_dir ):
0 commit comments