|
| 1 | +# Using batch size 4 instead of 1024 decreases runtime from 35 secs to 4 secs. |
| 2 | + |
| 3 | +from mxnet import gluon, init, autograd |
| 4 | +from mxnet.gluon import nn |
| 5 | +from mxnet.gluon.data.vision import datasets, transforms |
| 6 | +import time |
| 7 | +import mxnet as mx |
| 8 | +from tornasole import modes |
| 9 | +from tornasole.mxnet.hook import TornasoleHook as t_hook |
| 10 | +from tornasole import SaveConfig |
| 11 | +from tornasole.mxnet import reset_collections |
| 12 | +from tornasole.core.access_layer.utils import has_training_ended |
| 13 | +from tornasole.core.config_constants import CHECKPOINT_CONFIG_FILE_PATH_ENV_VAR |
| 14 | +from tornasole.trials import create_trial |
| 15 | +from datetime import datetime |
| 16 | + |
| 17 | +import shutil |
| 18 | +import os |
| 19 | + |
| 20 | + |
| 21 | +def acc(output, label): |
| 22 | + return (output.argmax(axis=1) == label.astype("float32")).mean().asscalar() |
| 23 | + |
| 24 | + |
| 25 | +def run_mnist( |
| 26 | + hook=None, |
| 27 | + set_modes=False, |
| 28 | + num_steps_train=None, |
| 29 | + num_steps_eval=None, |
| 30 | + epochs=2, |
| 31 | + save_interval=None, |
| 32 | + save_path="./saveParams", |
| 33 | +): |
| 34 | + batch_size = 4 |
| 35 | + normalize_mean = 0.13 |
| 36 | + mnist_train = datasets.FashionMNIST(train=True) |
| 37 | + |
| 38 | + X, y = mnist_train[0] |
| 39 | + ("X shape: ", X.shape, "X dtype", X.dtype, "y:", y) |
| 40 | + |
| 41 | + text_labels = [ |
| 42 | + "t-shirt", |
| 43 | + "trouser", |
| 44 | + "pullover", |
| 45 | + "dress", |
| 46 | + "coat", |
| 47 | + "sandal", |
| 48 | + "shirt", |
| 49 | + "sneaker", |
| 50 | + "bag", |
| 51 | + "ankle boot", |
| 52 | + ] |
| 53 | + transformer = transforms.Compose( |
| 54 | + [transforms.ToTensor(), transforms.Normalize(normalize_mean, 0.31)] |
| 55 | + ) |
| 56 | + |
| 57 | + mnist_train = mnist_train.transform_first(transformer) |
| 58 | + mnist_valid = gluon.data.vision.FashionMNIST(train=False) |
| 59 | + |
| 60 | + train_data = gluon.data.DataLoader( |
| 61 | + mnist_train, batch_size=batch_size, shuffle=True, num_workers=4 |
| 62 | + ) |
| 63 | + valid_data = gluon.data.DataLoader( |
| 64 | + mnist_valid.transform_first(transformer), batch_size=batch_size, num_workers=4 |
| 65 | + ) |
| 66 | + |
| 67 | + # Create Model in Gluon |
| 68 | + net = nn.HybridSequential() |
| 69 | + net.add( |
| 70 | + nn.Conv2D(channels=6, kernel_size=5, activation="relu"), |
| 71 | + nn.MaxPool2D(pool_size=2, strides=2), |
| 72 | + nn.Conv2D(channels=16, kernel_size=3, activation="relu"), |
| 73 | + nn.MaxPool2D(pool_size=2, strides=2), |
| 74 | + nn.Flatten(), |
| 75 | + nn.Dense(120, activation="relu"), |
| 76 | + nn.Dense(84, activation="relu"), |
| 77 | + nn.Dense(10), |
| 78 | + ) |
| 79 | + net.initialize(init=init.Xavier(), ctx=mx.cpu()) |
| 80 | + |
| 81 | + if hook is not None: |
| 82 | + # Register the forward Hook |
| 83 | + hook.register_hook(net) |
| 84 | + |
| 85 | + softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss() |
| 86 | + trainer = gluon.Trainer(net.collect_params(), "sgd", {"learning_rate": 0.1}) |
| 87 | + hook.register_hook(softmax_cross_entropy) |
| 88 | + |
| 89 | + # Start the training. |
| 90 | + for epoch in range(epochs): |
| 91 | + train_loss, train_acc, valid_acc = 0.0, 0.0, 0.0 |
| 92 | + tic = time.time() |
| 93 | + if set_modes: |
| 94 | + hook.set_mode(modes.TRAIN) |
| 95 | + |
| 96 | + i = 0 |
| 97 | + for data, label in train_data: |
| 98 | + data = data.as_in_context(mx.cpu(0)) |
| 99 | + # forward + backward |
| 100 | + with autograd.record(): |
| 101 | + output = net(data) |
| 102 | + loss = softmax_cross_entropy(output, label) |
| 103 | + loss.backward() |
| 104 | + # update parameters |
| 105 | + trainer.step(batch_size) |
| 106 | + # calculate training metrics |
| 107 | + train_loss += loss.mean().asscalar() |
| 108 | + train_acc += acc(output, label) |
| 109 | + i += 1 |
| 110 | + if num_steps_train is not None and i >= num_steps_train: |
| 111 | + break |
| 112 | + # calculate validation accuracy |
| 113 | + if set_modes: |
| 114 | + hook.set_mode(modes.EVAL) |
| 115 | + i = 0 |
| 116 | + for data, label in valid_data: |
| 117 | + data = data.as_in_context(mx.cpu(0)) |
| 118 | + val_output = net(data) |
| 119 | + valid_acc += acc(val_output, label) |
| 120 | + loss = softmax_cross_entropy(val_output, label) |
| 121 | + i += 1 |
| 122 | + if num_steps_eval is not None and i >= num_steps_eval: |
| 123 | + break |
| 124 | + print( |
| 125 | + "Epoch %d: loss %.3f, train acc %.3f, test acc %.3f, in %.1f sec" |
| 126 | + % ( |
| 127 | + epoch, |
| 128 | + train_loss / len(train_data), |
| 129 | + train_acc / len(train_data), |
| 130 | + valid_acc / len(valid_data), |
| 131 | + time.time() - tic, |
| 132 | + ) |
| 133 | + ) |
| 134 | + if save_interval is not None and (epoch % save_interval) == 0: |
| 135 | + net.save_parameters("{0}/params_{1}.params".format(save_path, epoch)) |
| 136 | + |
| 137 | + |
| 138 | +def test_spot_hook(): |
| 139 | + reset_collections() |
| 140 | + os.environ[ |
| 141 | + CHECKPOINT_CONFIG_FILE_PATH_ENV_VAR |
| 142 | + ] = "./tests/mxnet/test_json_configs/checkpointconfig.json" |
| 143 | + checkpoint_path = "./savedParams" |
| 144 | + if not os.path.exists(checkpoint_path): |
| 145 | + os.mkdir(checkpoint_path) |
| 146 | + save_config = SaveConfig(save_steps=[10, 11, 12, 13, 14, 40, 50, 60, 70, 80]) |
| 147 | + |
| 148 | + """ |
| 149 | + Run the training for 2 epochs and save the parameter after every epoch. |
| 150 | + We expect that steps 0 to 14 will be written. |
| 151 | + """ |
| 152 | + |
| 153 | + run_id_1 = "trial_" + datetime.now().strftime("%Y%m%d-%H%M%S%f") |
| 154 | + out_dir_1 = "newlogsRunTest/" + run_id_1 |
| 155 | + hook = t_hook( |
| 156 | + out_dir=out_dir_1, save_config=save_config, include_collections=["weights", "gradients"] |
| 157 | + ) |
| 158 | + assert has_training_ended(out_dir_1) == False |
| 159 | + run_mnist( |
| 160 | + hook=hook, |
| 161 | + num_steps_train=10, |
| 162 | + num_steps_eval=10, |
| 163 | + epochs=2, |
| 164 | + save_interval=1, |
| 165 | + save_path=checkpoint_path, |
| 166 | + ) |
| 167 | + |
| 168 | + """ |
| 169 | + Run the training again for 4 epochs and save the parameter after every epoch. |
| 170 | + We DONOT expect that steps 0 to 14 are written. |
| 171 | + We expect to read steps 40, 50, 60, 70 and 80 |
| 172 | + """ |
| 173 | + run_id_2 = "trial_" + datetime.now().strftime("%Y%m%d-%H%M%S%f") |
| 174 | + out_dir_2 = "newlogsRunTest/" + run_id_2 |
| 175 | + hook = t_hook( |
| 176 | + out_dir=out_dir_2, save_config=save_config, include_collections=["weights", "gradients"] |
| 177 | + ) |
| 178 | + assert has_training_ended(out_dir_2) == False |
| 179 | + run_mnist( |
| 180 | + hook=hook, |
| 181 | + num_steps_train=10, |
| 182 | + num_steps_eval=10, |
| 183 | + epochs=4, |
| 184 | + save_interval=1, |
| 185 | + save_path=checkpoint_path, |
| 186 | + ) |
| 187 | + # Unset the environ variable before validation so that it won't affect the other scripts in py test environment. |
| 188 | + del os.environ[CHECKPOINT_CONFIG_FILE_PATH_ENV_VAR] |
| 189 | + |
| 190 | + # Validation |
| 191 | + print("Created the trial with out_dir {0} for the first training".format(out_dir_1)) |
| 192 | + tr = create_trial(out_dir_1) |
| 193 | + assert tr |
| 194 | + available_steps_1 = tr.available_steps() |
| 195 | + assert 40 not in available_steps_1 |
| 196 | + assert 80 not in available_steps_1 |
| 197 | + print(available_steps_1) |
| 198 | + |
| 199 | + print("Created the trial with out_dir {0} for the second training".format(out_dir_2)) |
| 200 | + tr = create_trial(out_dir_2) |
| 201 | + assert tr |
| 202 | + available_steps_2 = tr.available_steps() |
| 203 | + assert 40 in available_steps_2 |
| 204 | + assert 50 in available_steps_2 |
| 205 | + assert 60 in available_steps_2 |
| 206 | + assert 70 in available_steps_2 |
| 207 | + assert 80 in available_steps_2 |
| 208 | + assert 0 not in available_steps_2 |
| 209 | + assert 10 not in available_steps_2 |
| 210 | + assert 11 not in available_steps_2 |
| 211 | + assert 12 not in available_steps_2 |
| 212 | + print(available_steps_2) |
| 213 | + |
| 214 | + print("Cleaning up.") |
| 215 | + shutil.rmtree(os.path.dirname(out_dir_1)) |
| 216 | + shutil.rmtree(checkpoint_path) |
0 commit comments