Skip to content

Commit 6d2cc33

Browse files
authored
Update sagemaker.md (aws#250)
1 parent 4cac480 commit 6d2cc33

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

docs/sagemaker.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -27,9 +27,9 @@ Here's a list of frameworks and versions which support this experience.
2727

2828
| Framework | Version |
2929
| --- | --- |
30-
| [TensorFlow](tensorflow.md) | 1.15 |
30+
| [TensorFlow](tensorflow.md) | 1.15, 2.1 |
3131
| [MXNet](mxnet.md) | 1.6 |
32-
| [PyTorch](pytorch.md) | 1.3 |
32+
| [PyTorch](pytorch.md) | 1.4, 1.5 |
3333
| [XGBoost](xgboost.md) | >=0.90-2 [As Built-in algorithm](xgboost.md#use-xgboost-as-a-built-in-algorithm)|
3434

3535
More details for the deep learning frameworks on which containers these are can be found here: [SageMaker Framework Containers](https://docs.aws.amazon.com/sagemaker/latest/dg/pre-built-containers-frameworks-deep-learning.html) and [AWS Deep Learning Containers](https://aws.amazon.com/machine-learning/containers/). You do not have to specify any training container image if you want to use them on SageMaker. You only need to specify the version above to use these containers.
@@ -40,11 +40,11 @@ This library `smdebug` itself supports versions other than the ones listed above
4040

4141
| Framework | Versions |
4242
| --- | --- |
43-
| [TensorFlow](tensorflow.md) | 1.13, 1.14, 1.15 |
43+
| [TensorFlow](tensorflow.md) | 1.13, 1.14, 1.15, 2.1, 2.2 |
4444
| Keras (with TensorFlow backend) | 2.3 |
4545
| [MXNet](mxnet.md) | 1.4, 1.5, 1.6 |
46-
| [PyTorch](pytorch.md) | 1.2, 1.3 |
47-
| [XGBoost](xgboost.md) | [As Framework](xgboost.md#use-xgboost-as-a-framework) |
46+
| [PyTorch](pytorch.md) | 1.2, 1.3, 1.4, 1.5 |
47+
| [XGBoost](xgboost.md) | 0.90-2, 1.0-1 |
4848

4949
#### Setting up SageMaker Debugger with your script on your container
5050

0 commit comments

Comments
 (0)