Skip to content

Commit d0ffa0f

Browse files
jarednielsenrahul003
authored andcommitted
Fix links and address comments (aws#73)
1 parent dd90e7c commit d0ffa0f

File tree

5 files changed

+24
-25
lines changed

5 files changed

+24
-25
lines changed

README.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ There are two ways to use it: Automatic mode and configurable mode.
2222

2323
## Example: Amazon SageMaker Zero-Code-Change
2424
This example uses a zero-script-change experience, where you can use your training script as-is.
25-
See the [example notebooks](https://link.com) for more details.
25+
See the [example notebooks](https://github.com/awslabs/amazon-sagemaker-examples/tree/master/sagemaker-debugger) for more details.
2626
```python
2727
import sagemaker
2828
from sagemaker.debugger import rule_configs, Rule, CollectionConfig
@@ -88,7 +88,7 @@ print(f"Loss values were {trial.tensor('CrossEntropyLoss:0')}")
8888
Amazon SageMaker Debugger uses a `hook` to store the values of tensors throughout the training process. Another process called a `rule` job
8989
simultaneously monitors and validates these outputs to ensure that training is progressing as expected.
9090
A rule might check for vanishing gradients, or exploding tensor values, or poor weight initialization.
91-
If a rule is triggered, it will raise a CloudWatch event and stop the training job, saving you time
91+
If a rule is triggered, it will raise a CloudWatch event, saving you time
9292
and money.
9393

9494
Amazon SageMaker Debugger can be used inside or outside of SageMaker. There are three main use cases:
@@ -99,9 +99,9 @@ Amazon SageMaker Debugger can be used inside or outside of SageMaker. There are
9999
The reason for different setups is that SageMaker Zero-Script-Change (via Deep Learning Containers) uses custom framework forks of TensorFlow, PyTorch, MXNet, and XGBoost to save tensors automatically.
100100
These framework forks are not available in custom containers or non-SM environments, so you must modify your training script in these environments.
101101

102-
See the [SageMaker page](https://github.com/awslabs/sagemaker-debugger/blob/master/docs/sagemaker.md) for details on SageMaker Zero-Code-Change and BYOC experience.\
102+
See the [SageMaker page](docs/sagemaker.md) for details on SageMaker Zero-Code-Change and BYOC experience.\
103103
See the frameworks pages for details on modifying the training script:
104-
- [TensorFlow](https://github.com/awslabs/sagemaker-debugger/blob/master/docs/tensorflow.md)
105-
- [PyTorch](https://github.com/awslabs/sagemaker-debugger/blob/master/docs/pytorch.md)
106-
- [MXNet](https://github.com/awslabs/sagemaker-debugger/blob/master/docs/mxnet.md)
107-
- [XGBoost](https://github.com/awslabs/sagemaker-debugger/blob/master/docs/xgboost.md)
104+
- [TensorFlow](docs/tensorflow.md)
105+
- [PyTorch](docs/pytorch.md)
106+
- [MXNet](docs/mxnet.md)
107+
- [XGBoost](docs/xgboost.md)

docs/api.md

Lines changed: 8 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,6 @@
11

22
# Common API
33
These objects exist across all frameworks.
4-
- [SageMaker Zero-Code-Change vs. Python API](#sagemaker)
54
- [Creating a Hook](#creating-a-hook)
65
- [Hook from SageMaker](#hook-from-sagemaker)
76
- [Hook from Python](#hook-from-python)
@@ -14,8 +13,7 @@ These objects exist across all frameworks.
1413

1514
The imports assume `import smdebug.{tensorflow,pytorch,mxnet,xgboost} as smd`.
1615

17-
**Hook**: The main interface to use training. This object can be passed as a model hook/callback
18-
in Tensorflow and Keras. It keeps track of collections and writes output files at each step.
16+
**Hook**: The main class to pass as a callback object, or to create callback functions. It keeps track of collections and writes output files at each step.
1917
- `hook = smd.Hook(out_dir="/tmp/mnist_job")`
2018

2119
**Mode**: One of "train", "eval", "predict", or "global". Helpful for segmenting data based on the phase
@@ -32,10 +30,10 @@ tensors to include/exclude.
3230
**ReductionConfig**: Allows you to save a reduction, such as 'mean' or 'l1 norm', instead of the full tensor.
3331
- `reduction_config = smd.ReductionConfig(reductions=['min', 'max', 'mean'], norms=['l1'])`
3432

35-
**Trial**: The main interface to use when analyzing a completed training job. Access collections and tensors. See [trials documentation](https://link.com).
33+
**Trial**: The main interface to use when analyzing a completed training job. Access collections and tensors. See [trials documentation](analysis.md).
3634
- `trial = smd.create_trial(out_dir="/tmp/mnist_job")`
3735

38-
**Rule**: A condition that will trigger an exception and terminate the training job early, for example a vanishing gradient. See [rules documentation](https://link.com).
36+
**Rule**: A condition that will trigger an exception, for example a vanishing gradient. See [rules documentation](analysis.md).
3937

4038

4139
---
@@ -44,7 +42,7 @@ tensors to include/exclude.
4442

4543
### Hook from SageMaker
4644
If you create a SageMaker job and specify the hook configuration in the SageMaker Estimator API
47-
as described in [AWS Docs](https://link.com),
45+
as described in [AWS Docs](https://docs.aws.amazon.com/sagemaker/latest/dg/train-model.html),
4846
the a JSON file will be automatically written. You can create a hook from this file by calling
4947
```python
5048
hook = smd.{hook_class}.create_from_json_file()
@@ -53,10 +51,10 @@ with no arguments and then use the hook Python API in your script. `hook_class`
5351

5452
### Hook from Python
5553
See the framework-specific pages for more details.
56-
* [TensorFlow](https://link.com)
57-
* [PyTorch](https://link.com)
58-
* [MXNet](https://link.com)
59-
* [XGBoost](https://link.com)
54+
* [TensorFlow](tensorflow.md)
55+
* [PyTorch](pytorch.md)
56+
* [MXNet](mxnet.md)
57+
* [XGBoost](xgboost.md)
6058

6159
---
6260

docs/mxnet.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# MXNet
22

3-
SageMaker Zero-Code-Change supported container: MXNet 1.6. See [AWS Docs](https://link.com) for more information.\
3+
SageMaker Zero-Code-Change supported container: MXNet 1.6. See [AWS Docs](https://docs.aws.amazon.com/sagemaker/latest/dg/train-model.html) for more information.\
44
Python API supported versions: MXNet 1.4, 1.5, 1.6.
55

66
## Contents

docs/pytorch.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# PyTorch
22

3-
SageMaker Zero-Code-Change supported containers: PyTorch 1.3. See [AWS Docs](https://link.com) for more information.\
3+
SageMaker Zero-Code-Change supported containers: PyTorch 1.3. See [AWS Docs](https://docs.aws.amazon.com/sagemaker/latest/dg/train-model.html) for more information.\
44
Python API supported versions: 1.2, 1.3.
55

66
## Contents
@@ -71,8 +71,8 @@ for (inputs, labels) in trainloader:
7171
```
7272

7373
## Full API
74-
See the [Common API](https://link.com) page for details about Collection, SaveConfig, and ReductionConfig.\
75-
See the [Analysis](https://link.com) page for details about analyzing a training job.
74+
See the [Common API](api.md) page for details about Collection, SaveConfig, and ReductionConfig.\
75+
See the [Analysis](analysis.md) page for details about analyzing a training job.
7676

7777
## Hook
7878
```python

docs/sagemaker.md

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -13,10 +13,10 @@ These framework forks are not available in custom containers or non-SM environme
1313

1414
This configuration is used for both ZCC and BYOC. The only difference is that with a custom container, you modify your training script as well. See the framework pages below for details on how to modify your training script.
1515

16-
- [TensorFlow](https://github.com/awslabs/sagemaker-debugger/blob/master/docs/tensorflow.md)
17-
- [PyTorch](https://github.com/awslabs/sagemaker-debugger/blob/master/docs/pytorch.md)
18-
- [MXNet](https://github.com/awslabs/sagemaker-debugger/blob/master/docs/mxnet.md)
19-
- [XGBoost](https://github.com/awslabs/sagemaker-debugger/blob/master/docs/xgboost.md)
16+
- [TensorFlow](tensorflow.md)
17+
- [PyTorch](pytorch.md)
18+
- [MXNet](mxnet.md)
19+
- [XGBoost](xgboost.md)
2020

2121
```python
2222
rule = sagemaker.debugger.Rule.sagemaker(
@@ -110,6 +110,7 @@ sagemaker_simple_estimator.fit()
110110

111111
## List of Builtin Rules
112112
Full list of rules is:
113+
113114
| Rule Name | Behavior |
114115
|---|---|
115116
| `vanishing_gradient` | Detects a vanishing gradient. |

0 commit comments

Comments
 (0)