Skip to content

Commit 6eef950

Browse files
author
EC2 Default User
committed
edit aws_marketplace/using_model_packages/generic_sample_notebook/A_generic_sample_notebook_to_perform_inference_on_ML_model_packages_from_AWS_Marketplace.ipynb
1 parent 3559a8b commit 6eef950

File tree

1 file changed

+19
-19
lines changed

1 file changed

+19
-19
lines changed

aws_marketplace/using_model_packages/generic_sample_notebook/A_generic_sample_notebook_to_perform_inference_on_ML_model_packages_from_AWS_Marketplace.ipynb

Lines changed: 19 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7-
"## Deploy and perform inference on ML Model packages from AWS Marketplace.\n",
7+
"# Deploy and perform inference on ML Model packages from AWS Marketplace\n",
88
"\n",
99
"There are two simple ways to try/deploy [ML model packages from AWS Marketplace](https://aws.amazon.com/marketplace/search/results?page=1&filters=FulfillmentOptionType%2CSageMaker::ResourceType&FulfillmentOptionType=SageMaker&SageMaker::ResourceType=ModelPackage), either using AWS console to deploy an ML model package (see [this blog](https://aws.amazon.com/blogs/machine-learning/adding-ai-to-your-applications-with-ready-to-use-models-from-aws-marketplace/)) or via code written typically in a Jupyter notebook. Many listings have a high-quality sample Jupyter notebooks provided by the seller itself, usually, these sample notebooks are linked to the AWS Marketplace listing (E.g. [Source Separation](https://aws.amazon.com/marketplace/pp/prodview-23n4vi2zw67we?qid=1579739476471&sr=0-1&ref_=srh_res_product_title)), If a sample notebook exists, try it out. \n",
1010
"\n",
@@ -14,7 +14,7 @@
1414
"\n",
1515
"> **Note**:If you are facing technical issues while trying an ML model package from AWS Marketplace and need help, please open a support ticket or write to the team on [email protected] for additional assistance.\n",
1616
"\n",
17-
"#### Pre-requisites:\n",
17+
"## Pre-requisites\n",
1818
"1. Open this notebook from an Amazon SageMaker Notebook instance.\n",
1919
"1. Ensure that Amazon SageMaker notebook instance used has IAMExecutionRole with **AmazonSageMakerFullAccess**\n",
2020
"1. Your IAM role has these three permisions - **aws-marketplace:ViewSubscriptions**, **aws-marketplace:Unsubscribe**, **aws-marketplace:Subscribe** and you have authority to make AWS Marketplace subscriptions in the AWS account used.\n",
@@ -23,7 +23,7 @@
2323
"\n",
2424
"\n",
2525
"\n",
26-
"#### Additional Resources:\n",
26+
"## Additional Resources\n",
2727
"**Background on Model Packages**:\n",
2828
"1. An ML model can be created from a Model Package, to know how, see [Use a Model Package to Create a Model](https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-mkt-model-pkg-model.html). \n",
2929
"2. An ML Model accepts data and generates predictions.\n",
@@ -39,7 +39,7 @@
3939
"* For a Jupyter notebook of the sample solution for **Automating auto insurance claim processing workflow** outlined in [this re:Mars session](https://www.youtube.com/watch?v=GkKZt0s_ku0), see [amazon-sagemaker-examples/aws-marketplace](https://github.com/awslabs/amazon-sagemaker-examples/tree/master/aws_marketplace/using_model_packages/auto_insurance) GitHub repository.\n",
4040
"* For a Jupyter notebook of the sample solution for **Improving workplace safety solution** outlined in [this re:Invent session](https://www.youtube.com/watch?v=iLOXaWpK6ag), see [amazon-sagemaker-examples/aws-marketplace](https://github.com/awslabs/amazon-sagemaker-examples/tree/master/aws_marketplace/using_model_packages/improving_industrial_workplace_safety) GitHub repository.\n",
4141
"\n",
42-
"#### Contents:\n",
42+
"## Contents\n",
4343
"1. [Subscribe to the model package](#Subscribe-to-the-model-package)\n",
4444
" 1. [Identify compatible instance-type](#A.-Identify-compatible-instance-type)\n",
4545
" 2. [Identify content-type](#B.-Identify-content_type)\n",
@@ -57,7 +57,7 @@
5757
"4. [Delete the model](#4.-Delete-the-model)\n",
5858
"5. [Unsubscribe to the model package](#Unsubscribe-to-the-model-package)\n",
5959
"\n",
60-
"#### Usage instructions\n",
60+
"## Usage instructions\n",
6161
"You can run this notebook one cell at a time (By using Shift+Enter for running a cell)."
6262
]
6363
},
@@ -112,7 +112,7 @@
112112
"cell_type": "markdown",
113113
"metadata": {},
114114
"source": [
115-
"### 1. Subscribe to the model package"
115+
"## 1. Subscribe to the model package"
116116
]
117117
},
118118
{
@@ -140,7 +140,7 @@
140140
"cell_type": "markdown",
141141
"metadata": {},
142142
"source": [
143-
"#### A. Identify compatible instance-type\n",
143+
"### A. Identify compatible instance-type\n",
144144
"\n",
145145
"1. On the listing, Under **Pricing Information**, you will see **software pricing** for **real-time inference** as well as **batch-transform usage** for specific instance-types. \n",
146146
"\n",
@@ -168,7 +168,7 @@
168168
"cell_type": "markdown",
169169
"metadata": {},
170170
"source": [
171-
"#### B. Identify content_type\n",
171+
"### B. Identify content_type\n",
172172
"You need to specify input content-type and payload while performing inference on the model. In this sub-section you will identify input content type that is accepted by the model you wish to try. "
173173
]
174174
},
@@ -214,7 +214,7 @@
214214
"cell_type": "markdown",
215215
"metadata": {},
216216
"source": [
217-
"#### C. Specify model-package-arn\n",
217+
"### C. Specify model-package-arn\n",
218218
"A model-package-arn is a unique identifier for each ML model package from AWS Marketplace within a chosen region."
219219
]
220220
},
@@ -249,7 +249,7 @@
249249
"cell_type": "markdown",
250250
"metadata": {},
251251
"source": [
252-
"### 2. Create an Endpoint and perform real-time inference."
252+
"## 2. Create an Endpoint and perform real-time inference."
253253
]
254254
},
255255
{
@@ -275,7 +275,7 @@
275275
"cell_type": "markdown",
276276
"metadata": {},
277277
"source": [
278-
"#### A. Create an Endpoint"
278+
"### A. Create an Endpoint"
279279
]
280280
},
281281
{
@@ -304,7 +304,7 @@
304304
"cell_type": "markdown",
305305
"metadata": {},
306306
"source": [
307-
"#### B. Create input payload"
307+
"### B. Create input payload"
308308
]
309309
},
310310
{
@@ -667,7 +667,7 @@
667667
"cell_type": "markdown",
668668
"metadata": {},
669669
"source": [
670-
"#### C. Perform Real-time inference"
670+
"### C. Perform Real-time inference"
671671
]
672672
},
673673
{
@@ -739,7 +739,7 @@
739739
"cell_type": "markdown",
740740
"metadata": {},
741741
"source": [
742-
"#### D. Visualize output"
742+
"### D. Visualize output"
743743
]
744744
},
745745
{
@@ -765,7 +765,7 @@
765765
"cell_type": "markdown",
766766
"metadata": {},
767767
"source": [
768-
"#### E. Delete the endpoint"
768+
"### E. Delete the endpoint"
769769
]
770770
},
771771
{
@@ -789,7 +789,7 @@
789789
"cell_type": "markdown",
790790
"metadata": {},
791791
"source": [
792-
"### 3. Perform Batch inference"
792+
"## 3. Perform Batch inference"
793793
]
794794
},
795795
{
@@ -838,7 +838,7 @@
838838
"cell_type": "markdown",
839839
"metadata": {},
840840
"source": [
841-
"#### C. Visualize output"
841+
"Visualize output"
842842
]
843843
},
844844
{
@@ -879,7 +879,7 @@
879879
"cell_type": "markdown",
880880
"metadata": {},
881881
"source": [
882-
"### 4. Delete the model"
882+
"## 4. Delete the model"
883883
]
884884
},
885885
{
@@ -902,7 +902,7 @@
902902
"cell_type": "markdown",
903903
"metadata": {},
904904
"source": [
905-
"### 5. Cleanup "
905+
"## 5. Cleanup "
906906
]
907907
},
908908
{

0 commit comments

Comments
 (0)