22
22
" \n " ,
23
23
" ---\n " ,
24
24
" \n " ,
25
- " This notebook works with sagemaker python sdk >= 1.65.1. \n " ,
25
+ " This notebook works with sagemaker python sdk 2.x \n " ,
26
26
" \n " ,
27
27
" ## Contents\n " ,
28
28
" \n " ,
794
794
"metadata" : {},
795
795
"outputs" : [],
796
796
"source" : [
797
- " from sagemaker.predictor import RealTimePredictor\n " ,
798
- " from sagemaker.content_types import CONTENT_TYPE_CSV\n " ,
797
+ " from sagemaker.predictor import Predictor\n " ,
798
+ " from sagemaker.serializers import CSVSerializer\n " ,
799
+ " from sagemaker.deserializers import CSVDeserializer\n " ,
799
800
" \n " ,
800
801
" predictor = automl.deploy(initial_instance_count=1,\n " ,
801
802
" instance_type='ml.m5.2xlarge',\n " ,
802
803
" candidate=candidates[best_candidate_idx],\n " ,
803
804
" inference_response_keys=inference_response_keys,\n " ,
804
- " predictor_cls=RealTimePredictor)\n " ,
805
- " predictor.content_type = CONTENT_TYPE_CSV\n " ,
805
+ " predictor_cls=Predictor,\n " ,
806
+ " serializer=CSVSerializer(),\n " ,
807
+ " deserializer=CSVDeserializer())\n " ,
806
808
" \n " ,
807
- " print(\" Created endpoint: {}\" .format(predictor.endpoint ))\n "
809
+ " print(\" Created endpoint: {}\" .format(predictor.endpoint_name ))\n "
808
810
]
809
811
},
810
812
{
829
831
"metadata" : {},
830
832
"outputs" : [],
831
833
"source" : [
832
- " from io import StringIO\n " ,
833
- " \n " ,
834
- " prediction = predictor.predict(test_data_no_target.to_csv(sep=',', header=False, index=False)).decode('utf-8')\n " ,
835
- " prediction_df = pd.read_csv(StringIO(prediction), header=None, names=inference_response_keys)\n " ,
836
- " custom_predicted_labels = prediction_df.iloc[:,1].values >= best_candidate_threshold\n " ,
834
+ " prediction = predictor.predict(test_data_no_target.to_csv(sep=',', header=False, index=False))\n " ,
835
+ " prediction_df = pd.DataFrame(prediction, columns=inference_response_keys)\n " ,
836
+ " custom_predicted_labels = prediction_df.iloc[:,1].astype(float).values >= best_candidate_threshold\n " ,
837
837
" prediction_df['custom_predicted_label'] = custom_predicted_labels\n " ,
838
838
" prediction_df['custom_predicted_label'] = prediction_df['custom_predicted_label'].map({False: target_attribute_values[0], True: target_attribute_values[1]})\n " ,
839
839
" prediction_df"
906
906
},
907
907
"nbformat" : 4 ,
908
908
"nbformat_minor" : 4
909
- }
909
+ }
0 commit comments