|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Use SageMaker Distributed Model Parallel with Amazon SageMaker to Launch Training Job with Model Parallelization\n", |
| 8 | + "\n", |
| 9 | + "SageMaker Distributed Model Parallel (SMP) is a model parallelism library for training large deep learning models that were previously difficult to train due to GPU memory limitations. SageMaker Distributed Model Parallel automatically and efficiently splits a model across multiple GPUs and instances and coordinates model training, allowing you to increase prediction accuracy by creating larger models with more parameters.\n", |
| 10 | + "\n", |
| 11 | + "Use this notebook to configure Sagemaker Distributed Model Parallel to train a model using an example PyTorch training script and [Amazon SageMaker Python SDK](https://sagemaker.readthedocs.io/en/stable/overview.html#train-a-model-with-the-sagemaker-python-sdk). \n", |
| 12 | + "\n", |
| 13 | + "\n", |
| 14 | + "### Additional Resources\n", |
| 15 | + "\n", |
| 16 | + "If you are a new user of Amazon SageMaker, you may find the following helpful to learn more about SMP and using SageMaker with Pytorch. \n", |
| 17 | + "\n", |
| 18 | + "* To learn more about the SageMaker model parallelism library, see [Model Parallel Distributed Training with SageMaker Distributed\n", |
| 19 | + "](https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training-model-parallel.html).\n", |
| 20 | + "\n", |
| 21 | + "* To learn more about using the SageMaker Python SDK with Pytorch, see [Using PyTorch with the SageMaker Python SDK](https://sagemaker.readthedocs.io/en/stable/frameworks/pytorch/using_pytorch.html#using-third-party-libraries)\n", |
| 22 | + "\n", |
| 23 | + "* To learn more about launching a training job in Amazon SageMaker with your own training image, see [Use Your Own Training Algorithms\n", |
| 24 | + "](https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo.html)." |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "markdown", |
| 29 | + "metadata": {}, |
| 30 | + "source": [ |
| 31 | + "## Amazon SageMaker Initialization\n", |
| 32 | + "\n", |
| 33 | + "Run the following cell to initialize the notebook instance. Get the SageMaker execution role used to run this notebook." |
| 34 | + ] |
| 35 | + }, |
| 36 | + { |
| 37 | + "cell_type": "code", |
| 38 | + "execution_count": null, |
| 39 | + "metadata": {}, |
| 40 | + "outputs": [], |
| 41 | + "source": [ |
| 42 | + "%%time\n", |
| 43 | + "import sagemaker\n", |
| 44 | + "from sagemaker import get_execution_role\n", |
| 45 | + "from sagemaker.pytorch import PyTorch\n", |
| 46 | + "from smexperiments.experiment import Experiment\n", |
| 47 | + "from smexperiments.trial import Trial\n", |
| 48 | + "import boto3\n", |
| 49 | + "from time import gmtime, strftime\n", |
| 50 | + "\n", |
| 51 | + "role = get_execution_role() # provide a pre-existing role ARN as an alternative to creating a new role\n", |
| 52 | + "print(f'SageMaker Execution Role:{role}')\n", |
| 53 | + "\n", |
| 54 | + "session = boto3.session.Session()" |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "markdown", |
| 59 | + "metadata": {}, |
| 60 | + "source": [ |
| 61 | + "## Prepare your training script\n", |
| 62 | + "\n", |
| 63 | + "Run the following cell to view an example-training script for PyTorch 1.6" |
| 64 | + ] |
| 65 | + }, |
| 66 | + { |
| 67 | + "cell_type": "code", |
| 68 | + "execution_count": null, |
| 69 | + "metadata": {}, |
| 70 | + "outputs": [], |
| 71 | + "source": [ |
| 72 | + "# Run this cell to see an example of a training scripts that you can use to configure -\n", |
| 73 | + "# SageMaker Distributed Model Parallel with PyTorch version 1.6\n", |
| 74 | + "!cat utils/pt_mnist.py" |
| 75 | + ] |
| 76 | + }, |
| 77 | + { |
| 78 | + "cell_type": "markdown", |
| 79 | + "metadata": {}, |
| 80 | + "source": [ |
| 81 | + "## Define SageMaker Training Job\n", |
| 82 | + "\n", |
| 83 | + "Next, you will use SageMaker Estimator API to define a SageMaker Training Job. You will use an [`Estimator`](https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html) to define the number and type of EC2 instances Amazon SageMaker uses for training, as well as the size of the volume attached to those instances. \n", |
| 84 | + "\n", |
| 85 | + "You can update the following:\n", |
| 86 | + "* `processes_per_host`\n", |
| 87 | + "* `entry_point`\n", |
| 88 | + "* `instance_count`\n", |
| 89 | + "* `instance_type`\n", |
| 90 | + "* `base_job_name`\n", |
| 91 | + "\n", |
| 92 | + "In addition, you can supply and modify configuration parameters for the SageMaker Distributed Model Parallel library. These parameters will be passed in through the `distributions` argument, as shown below.\n", |
| 93 | + "\n", |
| 94 | + "### Update the Type and Number of EC2 Instances Used\n", |
| 95 | + "\n", |
| 96 | + "Specify your `processes_per_host`. Note that it must be a multiple of your partitions, which by default is 2.\n", |
| 97 | + "\n", |
| 98 | + "The instance type and number of instances you specify in `instance_type` and `instance_count` respectively will determine the number of GPUs Amazon SageMaker uses during training. Explicitly, `instance_type` will determine the number of GPUs on a single instance and that number will be multiplied by `instance_count`. \n", |
| 99 | + "\n", |
| 100 | + "You must specify values for `instance_type` and `instance_count` so that the total number of GPUs available for training is equal to `partitions` in `config` of `smp.init` in your training script. \n", |
| 101 | + "\n", |
| 102 | + "\n", |
| 103 | + "To look up instances types, see [Amazon EC2 Instance Types](https://aws.amazon.com/sagemaker/pricing/).\n", |
| 104 | + "\n", |
| 105 | + "\n", |
| 106 | + "### Uploading Checkpoint During Training or Resuming Checkpoint from Previous Training\n", |
| 107 | + "We also provide a custom way for users to upload checkpoints during training or resume checkpoints from previous training. We have integrated this into our `pt_mnist.py` example script. Please see the functions `aws_s3_sync`, `sync_local_checkpoints_to_s3`, and `sync_s3_checkpoints_to_local`. For the purpose of this example, we are only uploading a checkpoint during training, by using `sync_local_checkpoints_to_s3`. \n" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "markdown", |
| 112 | + "metadata": {}, |
| 113 | + "source": [ |
| 114 | + "After you have updated `entry_point`, `instance_count`, `instance_type` and `base_job_name`, run the following to create an estimator. " |
| 115 | + ] |
| 116 | + }, |
| 117 | + { |
| 118 | + "cell_type": "code", |
| 119 | + "execution_count": null, |
| 120 | + "metadata": {}, |
| 121 | + "outputs": [], |
| 122 | + "source": [ |
| 123 | + "sagemaker_session = sagemaker.session.Session(boto_session=session)\n", |
| 124 | + "mpioptions = \"-verbose -x orte_base_help_aggregate=0 \"\n", |
| 125 | + "mpioptions += \"--mca btl_vader_single_copy_mechanism none \"\n", |
| 126 | + "\n", |
| 127 | + "all_experiment_names = [exp.experiment_name for exp in Experiment.list()]\n", |
| 128 | + "\n", |
| 129 | + "#choose an experiment name (only need to create it once)\n", |
| 130 | + "experiment_name = \"SM-MP-DEMO\"\n", |
| 131 | + "\n", |
| 132 | + "# Load the experiment if it exists, otherwise create \n", |
| 133 | + "if experiment_name not in all_experiment_names:\n", |
| 134 | + " customer_churn_experiment = Experiment.create(\n", |
| 135 | + " experiment_name=experiment_name, sagemaker_boto_client=boto3.client(\"sagemaker\")\n", |
| 136 | + " )\n", |
| 137 | + "else:\n", |
| 138 | + " customer_churn_experiment = Experiment.load(\n", |
| 139 | + " experiment_name=experiment_name, sagemaker_boto_client=boto3.client(\"sagemaker\")\n", |
| 140 | + " )\n", |
| 141 | + "\n", |
| 142 | + "# Create a trial for the current run\n", |
| 143 | + "trial = Trial.create(\n", |
| 144 | + " trial_name=\"SMD-MP-demo-{}\".format(strftime(\"%Y-%m-%d-%H-%M-%S\", gmtime())),\n", |
| 145 | + " experiment_name=customer_churn_experiment.experiment_name,\n", |
| 146 | + " sagemaker_boto_client=boto3.client(\"sagemaker\"),\n", |
| 147 | + " )\n", |
| 148 | + "\n", |
| 149 | + "\n", |
| 150 | + "smd_mp_estimator = PyTorch(\n", |
| 151 | + " entry_point=\"pt_mnist.py\", # Pick your train script\n", |
| 152 | + " source_dir='utils',\n", |
| 153 | + " role=role,\n", |
| 154 | + " instance_type='ml.p3.16xlarge',\n", |
| 155 | + " sagemaker_session=sagemaker_session,\n", |
| 156 | + " framework_version='1.6.0',\n", |
| 157 | + " py_version='py3',\n", |
| 158 | + " instance_count=1,\n", |
| 159 | + " distribution={\n", |
| 160 | + " \"smdistributed\": {\n", |
| 161 | + " \"modelparallel\": {\n", |
| 162 | + " \"enabled\":True,\n", |
| 163 | + " \"parameters\": {\n", |
| 164 | + " \"microbatches\": 4,\n", |
| 165 | + " \"placement_strategy\": \"spread\",\n", |
| 166 | + " \"pipeline\": \"interleaved\",\n", |
| 167 | + " \"optimize\": \"speed\",\n", |
| 168 | + " \"partitions\": 2,\n", |
| 169 | + " \"ddp\": 1,\n", |
| 170 | + " }\n", |
| 171 | + " }\n", |
| 172 | + " },\n", |
| 173 | + " \"mpi\": {\n", |
| 174 | + " \"enabled\": True,\n", |
| 175 | + " \"processes_per_host\": 2, # Pick your processes_per_host\n", |
| 176 | + " \"custom_mpi_options\": mpioptions \n", |
| 177 | + " },\n", |
| 178 | + " },\n", |
| 179 | + " base_job_name=\"SMD-MP-demo\",\n", |
| 180 | + " )\n" |
| 181 | + ] |
| 182 | + }, |
| 183 | + { |
| 184 | + "cell_type": "markdown", |
| 185 | + "metadata": {}, |
| 186 | + "source": [ |
| 187 | + "Finally, you will use the estimator to launch the SageMaker training job." |
| 188 | + ] |
| 189 | + }, |
| 190 | + { |
| 191 | + "cell_type": "code", |
| 192 | + "execution_count": null, |
| 193 | + "metadata": {}, |
| 194 | + "outputs": [], |
| 195 | + "source": [ |
| 196 | + "smd_mp_estimator.fit(\n", |
| 197 | + " experiment_config={\n", |
| 198 | + " \"ExperimentName\": customer_churn_experiment.experiment_name,\n", |
| 199 | + " \"TrialName\": trial.trial_name,\n", |
| 200 | + " \"TrialComponentDisplayName\": \"Training\",\n", |
| 201 | + " })" |
| 202 | + ] |
| 203 | + } |
| 204 | + ], |
| 205 | + "metadata": { |
| 206 | + "kernelspec": { |
| 207 | + "display_name": "conda_python3", |
| 208 | + "language": "python", |
| 209 | + "name": "conda_python3" |
| 210 | + }, |
| 211 | + "language_info": { |
| 212 | + "codemirror_mode": { |
| 213 | + "name": "ipython", |
| 214 | + "version": 3 |
| 215 | + }, |
| 216 | + "file_extension": ".py", |
| 217 | + "mimetype": "text/x-python", |
| 218 | + "name": "python", |
| 219 | + "nbconvert_exporter": "python", |
| 220 | + "pygments_lexer": "ipython3", |
| 221 | + "version": "3.6.10" |
| 222 | + } |
| 223 | + }, |
| 224 | + "nbformat": 4, |
| 225 | + "nbformat_minor": 4 |
| 226 | +} |
0 commit comments