Skip to content

Commit 99e1e55

Browse files
author
AWS
committed
Amazon CodeGuru Profiler Update: Update documentation to include Python. Add ConflictException for DeleteProfilingGroup. Add FrameMetricValue.
1 parent 5a61e17 commit 99e1e55

File tree

2 files changed

+35
-21
lines changed

2 files changed

+35
-21
lines changed
Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,6 @@
1+
{
2+
"type": "feature",
3+
"category": "Amazon CodeGuru Profiler",
4+
"contributor": "",
5+
"description": "Update documentation to include Python. Add ConflictException for DeleteProfilingGroup. Add FrameMetricValue."
6+
}

services/codeguruprofiler/src/main/resources/codegen-resources/service-2.json

Lines changed: 29 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -63,7 +63,7 @@
6363
{"shape":"ThrottlingException"},
6464
{"shape":"ResourceNotFoundException"}
6565
],
66-
"documentation":"<p> Used by profiler agents to report their current state and to receive remote configuration updates. For example, <code>ConfigureAgent</code> can be used to tell and agent whether to profile or not and for how long to return profiling data. </p>"
66+
"documentation":"<p> Used by profiler agents to report their current state and to receive remote configuration updates. For example, <code>ConfigureAgent</code> can be used to tell an agent whether to profile or not and for how long to return profiling data. </p>"
6767
},
6868
"CreateProfilingGroup":{
6969
"name":"CreateProfilingGroup",
@@ -95,6 +95,7 @@
9595
"output":{"shape":"DeleteProfilingGroupResponse"},
9696
"errors":[
9797
{"shape":"InternalServerException"},
98+
{"shape":"ConflictException"},
9899
{"shape":"ValidationException"},
99100
{"shape":"ThrottlingException"},
100101
{"shape":"ResourceNotFoundException"}
@@ -480,11 +481,11 @@
480481
"AgentParameterField":{
481482
"type":"string",
482483
"enum":[
483-
"MaxStackDepth",
484-
"MemoryUsageLimitPercent",
485-
"MinimumTimeForReportingInMilliseconds",
484+
"SamplingIntervalInMilliseconds",
486485
"ReportingIntervalInMilliseconds",
487-
"SamplingIntervalInMilliseconds"
486+
"MinimumTimeForReportingInMilliseconds",
487+
"MemoryUsageLimitPercent",
488+
"MaxStackDepth"
488489
]
489490
},
490491
"AgentParameters":{
@@ -511,9 +512,9 @@
511512
"AggregationPeriod":{
512513
"type":"string",
513514
"enum":[
514-
"P1D",
515+
"PT5M",
515516
"PT1H",
516-
"PT5M"
517+
"P1D"
517518
]
518519
},
519520
"Anomalies":{
@@ -705,8 +706,8 @@
705706
"ComputePlatform":{
706707
"type":"string",
707708
"enum":[
708-
"AWSLambda",
709-
"Default"
709+
"Default",
710+
"AWSLambda"
710711
]
711712
},
712713
"ConfigureAgentRequest":{
@@ -861,8 +862,8 @@
861862
"FeedbackType":{
862863
"type":"string",
863864
"enum":[
864-
"Negative",
865-
"Positive"
865+
"Positive",
866+
"Negative"
866867
]
867868
},
868869
"FindingsReportId":{
@@ -946,9 +947,13 @@
946947
},
947948
"documentation":"<p> Information about a frame metric and its values. </p>"
948949
},
950+
"FrameMetricValue":{
951+
"type":"double",
952+
"box":true
953+
},
949954
"FrameMetricValues":{
950955
"type":"list",
951-
"member":{"shape":"Double"}
956+
"member":{"shape":"FrameMetricValue"}
952957
},
953958
"FrameMetrics":{
954959
"type":"list",
@@ -1199,7 +1204,8 @@
11991204
"documentation":"<p>The server encountered an internal error and is unable to complete the request.</p>",
12001205
"error":{"httpStatusCode":500},
12011206
"exception":true,
1202-
"fault":true
1207+
"fault":true,
1208+
"retryable":{"throttling":false}
12031209
},
12041210
"ListFindingsReportsRequest":{
12051211
"type":"structure",
@@ -1446,15 +1452,15 @@
14461452
"MetadataField":{
14471453
"type":"string",
14481454
"enum":[
1455+
"ComputePlatform",
14491456
"AgentId",
14501457
"AwsRequestId",
1451-
"ComputePlatform",
14521458
"ExecutionEnvironment",
14531459
"LambdaFunctionArn",
14541460
"LambdaMemoryLimitInMB",
1455-
"LambdaPreviousExecutionTimeInMilliseconds",
14561461
"LambdaRemainingTimeInMilliseconds",
1457-
"LambdaTimeGapBetweenInvokesInMilliseconds"
1462+
"LambdaTimeGapBetweenInvokesInMilliseconds",
1463+
"LambdaPreviousExecutionTimeInMilliseconds"
14581464
]
14591465
},
14601466
"Metric":{
@@ -1497,8 +1503,8 @@
14971503
"OrderBy":{
14981504
"type":"string",
14991505
"enum":[
1500-
"TimestampAscending",
1501-
"TimestampDescending"
1506+
"TimestampDescending",
1507+
"TimestampAscending"
15021508
]
15031509
},
15041510
"PaginationToken":{
@@ -1882,7 +1888,8 @@
18821888
"httpStatusCode":402,
18831889
"senderFault":true
18841890
},
1885-
"exception":true
1891+
"exception":true,
1892+
"retryable":{"throttling":false}
18861893
},
18871894
"String":{"type":"string"},
18881895
"Strings":{
@@ -1982,7 +1989,8 @@
19821989
"httpStatusCode":429,
19831990
"senderFault":true
19841991
},
1985-
"exception":true
1992+
"exception":true,
1993+
"retryable":{"throttling":false}
19861994
},
19871995
"Timestamp":{
19881996
"type":"timestamp",
@@ -2087,5 +2095,5 @@
20872095
"exception":true
20882096
}
20892097
},
2090-
"documentation":"<p>This section provides documentation for the Amazon CodeGuru Profiler API operations.</p> <pre><code> &lt;p&gt;Amazon CodeGuru Profiler collects runtime performance data from your live applications, and provides recommendations that can help you fine-tune your application performance. Using machine learning algorithms, CodeGuru Profiler can help you find your most expensive lines of code and suggest ways you can improve efficiency and remove CPU bottlenecks. &lt;/p&gt; &lt;p&gt;Amazon CodeGuru Profiler provides different visualizations of profiling data to help you identify what code is running on the CPU, see how much time is consumed, and suggest ways to reduce CPU utilization. &lt;/p&gt; &lt;note&gt; &lt;p&gt;Amazon CodeGuru Profiler currently supports applications written in all Java virtual machine (JVM) languages. While CodeGuru Profiler supports both visualizations and recommendations for applications written in Java, it can also generate visualizations and a subset of recommendations for applications written in other JVM languages.&lt;/p&gt; &lt;/note&gt; &lt;p&gt; For more information, see &lt;a href=&quot;https://docs.aws.amazon.com/codeguru/latest/profiler-ug/what-is-codeguru-profiler.html&quot;&gt;What is Amazon CodeGuru Profiler&lt;/a&gt; in the &lt;i&gt;Amazon CodeGuru Profiler User Guide&lt;/i&gt;. &lt;/p&gt; </code></pre>"
2098+
"documentation":"<p> This section provides documentation for the Amazon CodeGuru Profiler API operations. </p> <p> Amazon CodeGuru Profiler collects runtime performance data from your live applications, and provides recommendations that can help you fine-tune your application performance. Using machine learning algorithms, CodeGuru Profiler can help you find your most expensive lines of code and suggest ways you can improve efficiency and remove CPU bottlenecks. </p> <p> Amazon CodeGuru Profiler provides different visualizations of profiling data to help you identify what code is running on the CPU, see how much time is consumed, and suggest ways to reduce CPU utilization. </p> <note> <p>Amazon CodeGuru Profiler currently supports applications written in all Java virtual machine (JVM) languages and Python. While CodeGuru Profiler supports both visualizations and recommendations for applications written in Java, it can also generate visualizations and a subset of recommendations for applications written in other JVM languages and Python.</p> </note> <p> For more information, see <a href=\"https://docs.aws.amazon.com/codeguru/latest/profiler-ug/what-is-codeguru-profiler.html\">What is Amazon CodeGuru Profiler</a> in the <i>Amazon CodeGuru Profiler User Guide</i>. </p>"
20912099
}

0 commit comments

Comments
 (0)