Skip to content

Commit 4d43eac

Browse files
author
awstools
committed
feat(client-sagemaker): This release adds support for G5, P4d, and C6i instance types in Amazon SageMaker Inference and increases the number of hyperparameters that can be searched from 20 to 30 in Amazon SageMaker Automatic Model Tuning
1 parent 58d673a commit 4d43eac

File tree

2 files changed

+105
-13
lines changed

2 files changed

+105
-13
lines changed

clients/client-sagemaker/src/models/models_0.ts

Lines changed: 27 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -329,12 +329,29 @@ export enum ProductionVariantInstanceType {
329329
ML_C5_9XLARGE = "ml.c5.9xlarge",
330330
ML_C5_LARGE = "ml.c5.large",
331331
ML_C5_XLARGE = "ml.c5.xlarge",
332+
ML_C6I_12XLARGE = "ml.c6i.12xlarge",
333+
ML_C6I_16XLARGE = "ml.c6i.16xlarge",
334+
ML_C6I_24XLARGE = "ml.c6i.24xlarge",
335+
ML_C6I_2XLARGE = "ml.c6i.2xlarge",
336+
ML_C6I_32XLARGE = "ml.c6i.32xlarge",
337+
ML_C6I_4XLARGE = "ml.c6i.4xlarge",
338+
ML_C6I_8XLARGE = "ml.c6i.8xlarge",
339+
ML_C6I_LARGE = "ml.c6i.large",
340+
ML_C6I_XLARGE = "ml.c6i.xlarge",
332341
ML_G4DN_12XLARGE = "ml.g4dn.12xlarge",
333342
ML_G4DN_16XLARGE = "ml.g4dn.16xlarge",
334343
ML_G4DN_2XLARGE = "ml.g4dn.2xlarge",
335344
ML_G4DN_4XLARGE = "ml.g4dn.4xlarge",
336345
ML_G4DN_8XLARGE = "ml.g4dn.8xlarge",
337346
ML_G4DN_XLARGE = "ml.g4dn.xlarge",
347+
ML_G5_12XLARGE = "ml.g5.12xlarge",
348+
ML_G5_16XLARGE = "ml.g5.16xlarge",
349+
ML_G5_24XLARGE = "ml.g5.24xlarge",
350+
ML_G5_2XLARGE = "ml.g5.2xlarge",
351+
ML_G5_48XLARGE = "ml.g5.48xlarge",
352+
ML_G5_4XLARGE = "ml.g5.4xlarge",
353+
ML_G5_8XLARGE = "ml.g5.8xlarge",
354+
ML_G5_XLARGE = "ml.g5.xlarge",
338355
ML_INF1_24XLARGE = "ml.inf1.24xlarge",
339356
ML_INF1_2XLARGE = "ml.inf1.2xlarge",
340357
ML_INF1_6XLARGE = "ml.inf1.6xlarge",
@@ -362,6 +379,7 @@ export enum ProductionVariantInstanceType {
362379
ML_P3_16XLARGE = "ml.p3.16xlarge",
363380
ML_P3_2XLARGE = "ml.p3.2xlarge",
364381
ML_P3_8XLARGE = "ml.p3.8xlarge",
382+
ML_P4D_24XLARGE = "ml.p4d.24xlarge",
365383
ML_R5D_12XLARGE = "ml.r5d.12xlarge",
366384
ML_R5D_24XLARGE = "ml.r5d.24xlarge",
367385
ML_R5D_2XLARGE = "ml.r5d.2xlarge",
@@ -1310,7 +1328,7 @@ export enum TrainingInstanceType {
13101328
/**
13111329
* <p>Defines an instance group for heterogeneous cluster training.
13121330
* When requesting a training job using the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html">CreateTrainingJob</a> API,
1313-
* you can configure up to 5 different ML training instance groups.</p>
1331+
* you can configure multiple instance groups .</p>
13141332
*/
13151333
export interface InstanceGroup {
13161334
/**
@@ -11435,9 +11453,10 @@ export namespace IntegerParameterRange {
1143511453
* result in the training job with the best performance as measured by the objective metric
1143611454
* of the hyperparameter tuning job.</p>
1143711455
* <note>
11438-
* <p>You can specify a maximum of 20 hyperparameters that a hyperparameter tuning job
11439-
* can search over. Every possible value of a categorical parameter range counts
11440-
* against this limit.</p>
11456+
* <p>The maximum number of items specified for <code>Array Members</code> refers to
11457+
* the maximum number of hyperparameters for each range and also the maximum for the
11458+
* hyperparameter tuning job itself. That is, the sum of the number of hyperparameters
11459+
* for all the ranges can't exceed the maximum number specified.</p>
1144111460
* </note>
1144211461
*/
1144311462
export interface ParameterRanges {
@@ -11734,9 +11753,10 @@ export interface HyperParameterTrainingJobDefinition {
1173411753
* result in the training job with the best performance as measured by the objective metric
1173511754
* of the hyperparameter tuning job.</p>
1173611755
* <note>
11737-
* <p>You can specify a maximum of 20 hyperparameters that a hyperparameter tuning job
11738-
* can search over. Every possible value of a categorical parameter range counts
11739-
* against this limit.</p>
11756+
* <p>The maximum number of items specified for <code>Array Members</code> refers to
11757+
* the maximum number of hyperparameters for each range and also the maximum for the
11758+
* hyperparameter tuning job itself. That is, the sum of the number of hyperparameters
11759+
* for all the ranges can't exceed the maximum number specified.</p>
1174011760
* </note>
1174111761
*/
1174211762
HyperParameterRanges?: ParameterRanges;

codegen/sdk-codegen/aws-models/sagemaker.json

Lines changed: 78 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -3320,7 +3320,7 @@
33203320
"traits": {
33213321
"smithy.api#length": {
33223322
"min": 0,
3323-
"max": 20
3323+
"max": 30
33243324
}
33253325
}
33263326
},
@@ -4418,7 +4418,7 @@
44184418
"traits": {
44194419
"smithy.api#length": {
44204420
"min": 0,
4421-
"max": 20
4421+
"max": 30
44224422
}
44234423
}
44244424
},
@@ -20782,7 +20782,7 @@
2078220782
}
2078320783
},
2078420784
"traits": {
20785-
"smithy.api#documentation": "<p>Defines an instance group for heterogeneous cluster training. \n When requesting a training job using the <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html\">CreateTrainingJob</a> API, \n you can configure up to 5 different ML training instance groups.</p>"
20785+
"smithy.api#documentation": "<p>Defines an instance group for heterogeneous cluster training. \n When requesting a training job using the <a href=\"https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html\">CreateTrainingJob</a> API, \n you can configure multiple instance groups .</p>"
2078620786
}
2078720787
},
2078820788
"com.amazonaws.sagemaker#InstanceGroupName": {
@@ -21185,7 +21185,7 @@
2118521185
"traits": {
2118621186
"smithy.api#length": {
2118721187
"min": 0,
21188-
"max": 20
21188+
"max": 30
2118921189
}
2119021190
}
2119121191
},
@@ -31168,7 +31168,7 @@
3116831168
}
3116931169
},
3117031170
"traits": {
31171-
"smithy.api#documentation": "<p>Specifies ranges of integer, continuous, and categorical hyperparameters that a\n hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs\n with hyperparameter values within these ranges to find the combination of values that\n result in the training job with the best performance as measured by the objective metric\n of the hyperparameter tuning job.</p>\n <note>\n <p>You can specify a maximum of 20 hyperparameters that a hyperparameter tuning job\n can search over. Every possible value of a categorical parameter range counts\n against this limit.</p>\n </note>"
31171+
"smithy.api#documentation": "<p>Specifies ranges of integer, continuous, and categorical hyperparameters that a\n hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs\n with hyperparameter values within these ranges to find the combination of values that\n result in the training job with the best performance as measured by the objective metric\n of the hyperparameter tuning job.</p>\n <note>\n <p>The maximum number of items specified for <code>Array Members</code> refers to\n the maximum number of hyperparameters for each range and also the maximum for the\n hyperparameter tuning job itself. That is, the sum of the number of hyperparameters\n for all the ranges can't exceed the maximum number specified.</p>\n </note>"
3117231172
}
3117331173
},
3117431174
"com.amazonaws.sagemaker#ParameterType": {
@@ -31212,7 +31212,7 @@
3121231212
"traits": {
3121331213
"smithy.api#length": {
3121431214
"min": 1,
31215-
"max": 20
31215+
"max": 30
3121631216
}
3121731217
}
3121831218
},
@@ -33329,6 +33329,78 @@
3332933329
{
3333033330
"value": "ml.inf1.24xlarge",
3333133331
"name": "ML_INF1_24XLARGE"
33332+
},
33333+
{
33334+
"value": "ml.c6i.large",
33335+
"name": "ML_C6I_LARGE"
33336+
},
33337+
{
33338+
"value": "ml.c6i.xlarge",
33339+
"name": "ML_C6I_XLARGE"
33340+
},
33341+
{
33342+
"value": "ml.c6i.2xlarge",
33343+
"name": "ML_C6I_2XLARGE"
33344+
},
33345+
{
33346+
"value": "ml.c6i.4xlarge",
33347+
"name": "ML_C6I_4XLARGE"
33348+
},
33349+
{
33350+
"value": "ml.c6i.8xlarge",
33351+
"name": "ML_C6I_8XLARGE"
33352+
},
33353+
{
33354+
"value": "ml.c6i.12xlarge",
33355+
"name": "ML_C6I_12XLARGE"
33356+
},
33357+
{
33358+
"value": "ml.c6i.16xlarge",
33359+
"name": "ML_C6I_16XLARGE"
33360+
},
33361+
{
33362+
"value": "ml.c6i.24xlarge",
33363+
"name": "ML_C6I_24XLARGE"
33364+
},
33365+
{
33366+
"value": "ml.c6i.32xlarge",
33367+
"name": "ML_C6I_32XLARGE"
33368+
},
33369+
{
33370+
"value": "ml.g5.xlarge",
33371+
"name": "ML_G5_XLARGE"
33372+
},
33373+
{
33374+
"value": "ml.g5.2xlarge",
33375+
"name": "ML_G5_2XLARGE"
33376+
},
33377+
{
33378+
"value": "ml.g5.4xlarge",
33379+
"name": "ML_G5_4XLARGE"
33380+
},
33381+
{
33382+
"value": "ml.g5.8xlarge",
33383+
"name": "ML_G5_8XLARGE"
33384+
},
33385+
{
33386+
"value": "ml.g5.12xlarge",
33387+
"name": "ML_G5_12XLARGE"
33388+
},
33389+
{
33390+
"value": "ml.g5.16xlarge",
33391+
"name": "ML_G5_16XLARGE"
33392+
},
33393+
{
33394+
"value": "ml.g5.24xlarge",
33395+
"name": "ML_G5_24XLARGE"
33396+
},
33397+
{
33398+
"value": "ml.g5.48xlarge",
33399+
"name": "ML_G5_48XLARGE"
33400+
},
33401+
{
33402+
"value": "ml.p4d.24xlarge",
33403+
"name": "ML_P4D_24XLARGE"
3333233404
}
3333333405
]
3333433406
}

0 commit comments

Comments
 (0)