|
15 | 15 | import numpy as np
|
16 | 16 | import tempfile
|
17 | 17 | import pytest
|
| 18 | +import itertools |
| 19 | +from scipy.sparse import coo_matrix |
18 | 20 | from sagemaker.amazon.common import (
|
19 | 21 | record_deserializer,
|
20 | 22 | write_numpy_to_dense_tensor,
|
@@ -150,6 +152,195 @@ def test_invalid_label():
|
150 | 152 | write_numpy_to_dense_tensor(f, array, label_data)
|
151 | 153 |
|
152 | 154 |
|
| 155 | +def test_dense_float_write_spmatrix_to_sparse_tensor(): |
| 156 | + array_data = [[1.0, 2.0, 3.0], [10.0, 20.0, 30.0]] |
| 157 | + keys_data = [[0, 1, 2], [0, 1, 2]] |
| 158 | + array = coo_matrix(np.array(array_data)) |
| 159 | + with tempfile.TemporaryFile() as f: |
| 160 | + write_spmatrix_to_sparse_tensor(f, array) |
| 161 | + f.seek(0) |
| 162 | + for record_data, expected_data, expected_keys in zip( |
| 163 | + read_recordio(f), array_data, keys_data |
| 164 | + ): |
| 165 | + record = Record() |
| 166 | + record.ParseFromString(record_data) |
| 167 | + assert record.features["values"].float64_tensor.values == expected_data |
| 168 | + assert record.features["values"].float64_tensor.keys == expected_keys |
| 169 | + assert record.features["values"].float64_tensor.shape == [len(expected_data)] |
| 170 | + |
| 171 | + |
| 172 | +def test_dense_float32_write_spmatrix_to_sparse_tensor(): |
| 173 | + array_data = [[1.0, 2.0, 3.0], [10.0, 20.0, 30.0]] |
| 174 | + keys_data = [[0, 1, 2], [0, 1, 2]] |
| 175 | + array = coo_matrix(np.array(array_data).astype(np.dtype("float32"))) |
| 176 | + with tempfile.TemporaryFile() as f: |
| 177 | + write_spmatrix_to_sparse_tensor(f, array) |
| 178 | + f.seek(0) |
| 179 | + for record_data, expected_data, expected_keys in zip( |
| 180 | + read_recordio(f), array_data, keys_data |
| 181 | + ): |
| 182 | + record = Record() |
| 183 | + record.ParseFromString(record_data) |
| 184 | + assert record.features["values"].float32_tensor.values == expected_data |
| 185 | + assert record.features["values"].float32_tensor.keys == expected_keys |
| 186 | + assert record.features["values"].float32_tensor.shape == [len(expected_data)] |
| 187 | + |
| 188 | + |
| 189 | +def test_dense_int_write_spmatrix_to_sparse_tensor(): |
| 190 | + array_data = [[1.0, 2.0, 3.0], [10.0, 20.0, 30.0]] |
| 191 | + keys_data = [[0, 1, 2], [0, 1, 2]] |
| 192 | + array = coo_matrix(np.array(array_data).astype(np.dtype("int"))) |
| 193 | + with tempfile.TemporaryFile() as f: |
| 194 | + write_spmatrix_to_sparse_tensor(f, array) |
| 195 | + f.seek(0) |
| 196 | + for record_data, expected_data, expected_keys in zip( |
| 197 | + read_recordio(f), array_data, keys_data |
| 198 | + ): |
| 199 | + record = Record() |
| 200 | + record.ParseFromString(record_data) |
| 201 | + assert record.features["values"].int32_tensor.values == expected_data |
| 202 | + assert record.features["values"].int32_tensor.keys == expected_keys |
| 203 | + assert record.features["values"].int32_tensor.shape == [len(expected_data)] |
| 204 | + |
| 205 | + |
| 206 | +def test_dense_int_spmatrix_to_sparse_label(): |
| 207 | + array_data = [[1, 2, 3], [10, 20, 3]] |
| 208 | + keys_data = [[0, 1, 2], [0, 1, 2]] |
| 209 | + array = coo_matrix(np.array(array_data)) |
| 210 | + label_data = np.array([99, 98, 97]) |
| 211 | + with tempfile.TemporaryFile() as f: |
| 212 | + write_spmatrix_to_sparse_tensor(f, array, label_data) |
| 213 | + f.seek(0) |
| 214 | + for record_data, expected_data, expected_keys, label in zip( |
| 215 | + read_recordio(f), array_data, keys_data, label_data |
| 216 | + ): |
| 217 | + record = Record() |
| 218 | + record.ParseFromString(record_data) |
| 219 | + assert record.features["values"].int32_tensor.values == expected_data |
| 220 | + assert record.features["values"].int32_tensor.keys == expected_keys |
| 221 | + assert record.label["values"].int32_tensor.values == [label] |
| 222 | + assert record.features["values"].int32_tensor.shape == [len(expected_data)] |
| 223 | + |
| 224 | + |
| 225 | +def test_dense_float32_spmatrix_to_sparse_label(): |
| 226 | + array_data = [[1, 2, 3], [10, 20, 3]] |
| 227 | + keys_data = [[0, 1, 2], [0, 1, 2]] |
| 228 | + array = coo_matrix(np.array(array_data).astype("float32")) |
| 229 | + label_data = np.array([99, 98, 97]) |
| 230 | + with tempfile.TemporaryFile() as f: |
| 231 | + write_spmatrix_to_sparse_tensor(f, array, label_data) |
| 232 | + f.seek(0) |
| 233 | + for record_data, expected_data, expected_keys, label in zip( |
| 234 | + read_recordio(f), array_data, keys_data, label_data |
| 235 | + ): |
| 236 | + record = Record() |
| 237 | + record.ParseFromString(record_data) |
| 238 | + assert record.features["values"].float32_tensor.values == expected_data |
| 239 | + assert record.features["values"].float32_tensor.keys == expected_keys |
| 240 | + assert record.label["values"].int32_tensor.values == [label] |
| 241 | + assert record.features["values"].float32_tensor.shape == [len(expected_data)] |
| 242 | + |
| 243 | + |
| 244 | +def test_dense_float64_spmatrix_to_sparse_label(): |
| 245 | + array_data = [[1, 2, 3], [10, 20, 3]] |
| 246 | + keys_data = [[0, 1, 2], [0, 1, 2]] |
| 247 | + array = coo_matrix(np.array(array_data).astype("float64")) |
| 248 | + label_data = np.array([99, 98, 97]) |
| 249 | + with tempfile.TemporaryFile() as f: |
| 250 | + write_spmatrix_to_sparse_tensor(f, array, label_data) |
| 251 | + f.seek(0) |
| 252 | + for record_data, expected_data, expected_keys, label in zip( |
| 253 | + read_recordio(f), array_data, keys_data, label_data |
| 254 | + ): |
| 255 | + record = Record() |
| 256 | + record.ParseFromString(record_data) |
| 257 | + assert record.features["values"].float64_tensor.values == expected_data |
| 258 | + assert record.features["values"].float64_tensor.keys == expected_keys |
| 259 | + assert record.label["values"].int32_tensor.values == [label] |
| 260 | + assert record.features["values"].float64_tensor.shape == [len(expected_data)] |
| 261 | + |
| 262 | + |
| 263 | +def test_invalid_sparse_label(): |
| 264 | + array_data = [[1, 2, 3], [10, 20, 3]] |
| 265 | + array = coo_matrix(np.array(array_data)) |
| 266 | + label_data = np.array([99, 98, 97, 1000]).astype(np.dtype("float64")) |
| 267 | + with tempfile.TemporaryFile() as f: |
| 268 | + with pytest.raises(ValueError): |
| 269 | + write_spmatrix_to_sparse_tensor(f, array, label_data) |
| 270 | + |
| 271 | + |
| 272 | +def test_sparse_float_write_spmatrix_to_sparse_tensor(): |
| 273 | + n = 4 |
| 274 | + array_data = [[1.0, 2.0], [10.0, 30.0], [100.0, 200.0, 300.0, 400.0], [1000.0, 2000.0, 3000.0]] |
| 275 | + keys_data = [[0, 1], [1, 2], [0, 1, 2, 3], [0, 2, 3]] |
| 276 | + |
| 277 | + flatten_data = list(itertools.chain.from_iterable(array_data)) |
| 278 | + y_indices = list(itertools.chain.from_iterable(keys_data)) |
| 279 | + x_indices = [[i] * len(keys_data[i]) for i in range(len(keys_data))] |
| 280 | + x_indices = list(itertools.chain.from_iterable(x_indices)) |
| 281 | + |
| 282 | + array = coo_matrix((flatten_data, (x_indices, y_indices)), dtype="float64") |
| 283 | + with tempfile.TemporaryFile() as f: |
| 284 | + write_spmatrix_to_sparse_tensor(f, array) |
| 285 | + f.seek(0) |
| 286 | + for record_data, expected_data, expected_keys in zip( |
| 287 | + read_recordio(f), array_data, keys_data |
| 288 | + ): |
| 289 | + record = Record() |
| 290 | + record.ParseFromString(record_data) |
| 291 | + assert record.features["values"].float64_tensor.values == expected_data |
| 292 | + assert record.features["values"].float64_tensor.keys == expected_keys |
| 293 | + assert record.features["values"].float64_tensor.shape == [n] |
| 294 | + |
| 295 | + |
| 296 | +def test_sparse_float32_write_spmatrix_to_sparse_tensor(): |
| 297 | + n = 4 |
| 298 | + array_data = [[1.0, 2.0], [10.0, 30.0], [100.0, 200.0, 300.0, 400.0], [1000.0, 2000.0, 3000.0]] |
| 299 | + keys_data = [[0, 1], [1, 2], [0, 1, 2, 3], [0, 2, 3]] |
| 300 | + |
| 301 | + flatten_data = list(itertools.chain.from_iterable(array_data)) |
| 302 | + y_indices = list(itertools.chain.from_iterable(keys_data)) |
| 303 | + x_indices = [[i] * len(keys_data[i]) for i in range(len(keys_data))] |
| 304 | + x_indices = list(itertools.chain.from_iterable(x_indices)) |
| 305 | + |
| 306 | + array = coo_matrix((flatten_data, (x_indices, y_indices)), dtype="float32") |
| 307 | + with tempfile.TemporaryFile() as f: |
| 308 | + write_spmatrix_to_sparse_tensor(f, array) |
| 309 | + f.seek(0) |
| 310 | + for record_data, expected_data, expected_keys in zip( |
| 311 | + read_recordio(f), array_data, keys_data |
| 312 | + ): |
| 313 | + record = Record() |
| 314 | + record.ParseFromString(record_data) |
| 315 | + assert record.features["values"].float32_tensor.values == expected_data |
| 316 | + assert record.features["values"].float32_tensor.keys == expected_keys |
| 317 | + assert record.features["values"].float32_tensor.shape == [n] |
| 318 | + |
| 319 | + |
| 320 | +def test_sparse_int_write_spmatrix_to_sparse_tensor(): |
| 321 | + n = 4 |
| 322 | + array_data = [[1.0, 2.0], [10.0, 30.0], [100.0, 200.0, 300.0, 400.0], [1000.0, 2000.0, 3000.0]] |
| 323 | + keys_data = [[0, 1], [1, 2], [0, 1, 2, 3], [0, 2, 3]] |
| 324 | + |
| 325 | + flatten_data = list(itertools.chain.from_iterable(array_data)) |
| 326 | + y_indices = list(itertools.chain.from_iterable(keys_data)) |
| 327 | + x_indices = [[i] * len(keys_data[i]) for i in range(len(keys_data))] |
| 328 | + x_indices = list(itertools.chain.from_iterable(x_indices)) |
| 329 | + |
| 330 | + array = coo_matrix((flatten_data, (x_indices, y_indices)), dtype="int") |
| 331 | + with tempfile.TemporaryFile() as f: |
| 332 | + write_spmatrix_to_sparse_tensor(f, array) |
| 333 | + f.seek(0) |
| 334 | + for record_data, expected_data, expected_keys in zip( |
| 335 | + read_recordio(f), array_data, keys_data |
| 336 | + ): |
| 337 | + record = Record() |
| 338 | + record.ParseFromString(record_data) |
| 339 | + assert record.features["values"].int32_tensor.values == expected_data |
| 340 | + assert record.features["values"].int32_tensor.keys == expected_keys |
| 341 | + assert record.features["values"].int32_tensor.shape == [n] |
| 342 | + |
| 343 | + |
153 | 344 | def test_dense_to_sparse():
|
154 | 345 | array_data = [[1, 2, 3], [10, 20, 3]]
|
155 | 346 | array = np.array(array_data)
|
|
0 commit comments