Skip to content

Commit 1695db6

Browse files
authored
Merge branch 'master' into patch-1
2 parents d11246d + 2741e6e commit 1695db6

File tree

155 files changed

+10628
-727
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

155 files changed

+10628
-727
lines changed

.github/ISSUE_TEMPLATE/config.yml

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
blank_issues_enabled: false
22
contact_links:
33
- name: Ask a question
4-
url: https://stackoverflow.com/questions/tagged/amazon-sagemaker
5-
about: Use Stack Overflow to ask and answer questions
4+
url: https://github.com/aws/sagemaker-python-sdk/discussions
5+
about: Use GitHub Discussions to ask and answer questions

CHANGELOG.md

Lines changed: 283 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,288 @@
11
# Changelog
22

3+
## v2.48.0 (2021-07-07)
4+
5+
### Features
6+
7+
* HuggingFace Inference
8+
9+
### Bug Fixes and Other Changes
10+
11+
* add support for SageMaker workflow tuning step
12+
13+
## v2.47.2.post0 (2021-07-01)
14+
15+
### Documentation Changes
16+
17+
* smddp 1.2.1 release note / convert md to rst
18+
* add smd model parallel 1.4.0 release note / restructure doc files
19+
20+
## v2.47.2 (2021-06-30)
21+
22+
### Bug Fixes and Other Changes
23+
24+
* handle tags when upsert pipeine
25+
26+
## v2.47.1 (2021-06-27)
27+
28+
### Bug Fixes and Other Changes
29+
30+
* revert "fix: jsonGet interpolation issue 2426 + allow step depends on pass in step instance (#2477)"
31+
32+
## v2.47.0 (2021-06-25)
33+
34+
### Features
35+
36+
* support job_name_prefix for Clarify
37+
38+
### Bug Fixes and Other Changes
39+
40+
* Add configuration option with headers for Clarify Explainability
41+
* jsonGet interpolation issue 2426 + allow step depends on pass in step instance
42+
* add default retries to feature group ingestion.
43+
* Update using_pytorch.rst
44+
* kms key does not propapate in register model step
45+
* Correctly interpolate Callback output parameters
46+
47+
## v2.46.1 (2021-06-22)
48+
49+
### Bug Fixes and Other Changes
50+
51+
* Register model step tags
52+
53+
### Documentation Changes
54+
55+
* update to include new batch_get_record api call
56+
* Correct type annotation for TrainingStep inputs
57+
* introduce input mode FastFile
58+
* update hf transformer version
59+
60+
## v2.46.0 (2021-06-15)
61+
62+
### Features
63+
64+
* Add HF transformer version 4.6.1
65+
66+
### Bug Fixes and Other Changes
67+
68+
* encode localmode payload to UTF-8
69+
* call DescribeDomain as fallback in get_execution_role
70+
* parameterize PT and TF version for HuggingFace tests
71+
72+
### Documentation Changes
73+
74+
* Add import statement in Batch Transform Overview doc
75+
76+
## v2.45.0 (2021-06-07)
77+
78+
### Features
79+
80+
* Add support for Callback steps in model building pipelines
81+
82+
## v2.44.0 (2021-06-01)
83+
84+
### Features
85+
86+
* support endpoint_name_prefix, seed and version for Clarify
87+
88+
## v2.43.0 (2021-05-31)
89+
90+
### Features
91+
92+
* add xgboost framework version 1.3-1
93+
94+
### Bug Fixes and Other Changes
95+
96+
* remove duplicated tags in _append_project_tags
97+
98+
## v2.42.1 (2021-05-27)
99+
100+
### Bug Fixes and Other Changes
101+
102+
* default value removed if zero for integer param
103+
104+
## v2.42.0 (2021-05-24)
105+
106+
### Features
107+
108+
* support for custom pipeline execution name
109+
* Add data ingestion only data-wrangler flow recipe generation helper function
110+
111+
### Bug Fixes and Other Changes
112+
113+
* add kms key for processing job code upload
114+
* remove failing notebooks from notebook pr test
115+
* fix in and not in condition bug
116+
* Update overview.rst
117+
118+
### Documentation Changes
119+
120+
* Update "Ask a question" contact link
121+
* Update smdp docs with sparse_as_dense support
122+
123+
## v2.41.0 (2021-05-17)
124+
125+
### Features
126+
127+
* add pipeline experiment config
128+
* add data wrangler processor
129+
* support RetryStrategy for training jobs
130+
131+
### Bug Fixes and Other Changes
132+
133+
* fix repack pipeline step by putting inference.py in "code" sub dir
134+
* add data wrangler image uri
135+
* fix black-check errors
136+
137+
## v2.40.0 (2021-05-11)
138+
139+
### Features
140+
141+
* add xgboost framework version 1.2-2
142+
143+
### Bug Fixes and Other Changes
144+
145+
* fix get_execution_role on Studio
146+
* [fix] Check py_version existence in RegisterModel step
147+
148+
### Documentation Changes
149+
150+
* SM Distributed EFA Launch
151+
152+
## v2.39.1 (2021-05-05)
153+
154+
### Bug Fixes and Other Changes
155+
156+
* RegisterModel step and custom dependency support
157+
158+
### Documentation Changes
159+
160+
* reverting SageMaker distributed data parallel EFA doc updates
161+
* adding new version, SM dist. data parallel 1.2.0.
162+
* add current Hugging Face supported versions
163+
* SMDDP 1.2.0 release notes
164+
165+
## v2.39.0.post0 (2021-05-04)
166+
167+
### Testing and Release Infrastructure
168+
169+
* disable smdataparallel tests
170+
171+
## v2.39.0 (2021-04-28)
172+
173+
### Features
174+
175+
* Add HF transformer version 4.5.0
176+
177+
### Bug Fixes and Other Changes
178+
179+
* Allow hyperparameters in Tensorflow estimator to be parameterized
180+
181+
### Testing and Release Infrastructure
182+
183+
* black format unit tests
184+
185+
## v2.38.0 (2021-04-21)
186+
187+
### Features
188+
189+
* support multiprocess feature group ingest (#2111)
190+
191+
## v2.37.0 (2021-04-20)
192+
193+
### Features
194+
195+
* add experiment_config for clarify processing job
196+
197+
### Documentation Changes
198+
199+
* release notes for smdistributed.dataparallel v1.1.2
200+
201+
## v2.36.0 (2021-04-19)
202+
203+
### Features
204+
205+
* enable smdataparallel custom mpi options support
206+
207+
## v2.35.0 (2021-04-14)
208+
209+
### Features
210+
211+
* add support for PyTorch 1.8.1
212+
213+
### Bug Fixes and Other Changes
214+
215+
* boto3 client param updated for feature store
216+
* Updated release notes and API doc for smd model parallel 1.3.1
217+
218+
## v2.34.0 (2021-04-12)
219+
220+
### Features
221+
222+
* Add support for accelerator in Clarify
223+
224+
### Bug Fixes and Other Changes
225+
226+
* add Documentation for how to use
227+
* enable local mode tests that were skipped
228+
* add integ test for HuggingFace with TensorFlow
229+
230+
### Documentation Changes
231+
232+
* release notes for smdistributed.dataparallel v1.1.1
233+
* fixing the SageMaker distributed version references
234+
235+
### Testing and Release Infrastructure
236+
237+
* pin version for ducutils
238+
239+
## v2.33.0 (2021-04-05)
240+
241+
### Features
242+
243+
* Add environment variable support for SageMaker training job
244+
245+
### Bug Fixes and Other Changes
246+
247+
* add version length mismatch validation for HuggingFace
248+
* Disable debugger when checkpointing is enabled with distributed training
249+
* map user context is list associations response
250+
251+
### Testing and Release Infrastructure
252+
253+
* disable_profiler on mx-horovod test
254+
255+
## v2.32.1 (2021-04-01)
256+
257+
### Bug Fixes and Other Changes
258+
259+
* disable profiler in some release tests
260+
* remove outdated notebook from test
261+
* add compilation option for ml_eia2
262+
* add short version to smdataparallel supported list
263+
264+
### Documentation Changes
265+
266+
* creating a "latest" version sm distributed docs
267+
* add docs for Sagemaker Model Parallel 1.3, released with PT 1.8
268+
* update PyTorch version in doc
269+
270+
## v2.32.0 (2021-03-26)
271+
272+
### Features
273+
274+
* upgrade neo mxnet to 1.8
275+
* Enable Profiler in China Regions
276+
277+
### Bug Fixes and Other Changes
278+
279+
* use workflow parameters in training hyperparameters (#2114) (#2115)
280+
* skip HuggingFace tests in regions without p2 instances
281+
282+
### Documentation Changes
283+
284+
* add Feature Store methods docs
285+
3286
## v2.31.1 (2021-03-23)
4287

5288
### Bug Fixes and Other Changes

VERSION

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
2.31.2.dev0
1+
2.48.1.dev0

doc/amazon_sagemaker_featurestore.rst

Lines changed: 8 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -67,7 +67,7 @@ use the SageMaker default bucket and add a custom prefix to it.
6767
offline_feature_store_bucket = 's3://*{}*/*{}*'.format(default_bucket, prefix)
6868
6969
sagemaker_client = boto_session.client(service_name='sagemaker', region_name=region)
70-
featurestore_runtime = boto_session.client(service_name='featurestore-runtime', region_name=region)
70+
featurestore_runtime = boto_session.client(service_name='sagemaker-featurestore-runtime', region_name=region)
7171
7272
feature_store_session = Session(
7373
    boto_session=boto_session,
@@ -291,6 +291,13 @@ example identifier to retrieve the record.
291291
record_identifier_value = str(2990130)
292292
featurestore_runtime.get_record(FeatureGroupName=transaction_feature_group_name, RecordIdentifierValueAsString=record_identifier_value)
293293
294+
You can use the ``batch_get_record`` function to retrieve multiple records simultaneously from your feature store. The following example uses this API to retrieve a batch of records.
295+
296+
.. code:: python
297+
298+
record_identifier_values = ["573291", "109382", "828400", "124013"]
299+
featurestore_runtime.batch_get_record(Identifiers=[{"FeatureGroupName": transaction_feature_group_name, "RecordIdentifiersValueAsString": record_identifier_values}])
300+
294301
An example response from the fraud detection example:
295302
296303
.. code:: python
Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,9 @@
1+
2+
Version 1.2.x (Latest)
3+
======================
4+
5+
.. toctree::
6+
:maxdepth: 1
7+
8+
latest/smd_data_parallel_pytorch.rst
9+
latest/smd_data_parallel_tensorflow.rst

doc/api/training/sdp_versions/v1.1.0/smd_data_parallel_pytorch.rst renamed to doc/api/training/sdp_versions/latest/smd_data_parallel_pytorch.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -153,9 +153,9 @@ you will have for distributed training with the distributed data parallel librar
153153
PyTorch API
154154
===========
155155

156-
**Supported versions:**
156+
.. rubric:: Supported versions
157157

158-
- PyTorch 1.6.0, 1.8.0
158+
**PyTorch 1.7.1, 1.8.1**
159159

160160

161161
.. function:: smdistributed.dataparallel.torch.distributed.is_available()

doc/api/training/sdp_versions/v1.1.0/smd_data_parallel_tensorflow.rst renamed to doc/api/training/sdp_versions/latest/smd_data_parallel_tensorflow.rst

Lines changed: 7 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -16,8 +16,9 @@ The following steps show you how to convert a TensorFlow 2.x training
1616
script to utilize the distributed data parallel library.
1717

1818
The distributed data parallel library APIs are designed to be close to Horovod APIs.
19-
See `SageMaker distributed data parallel TensorFlow examples <https://sagemaker-examples.readthedocs.io/en/latest/training/distributed_training/index.html#tensorflow-distributed>`__ for additional details on how to implement the data parallel library
20-
API offered for TensorFlow.
19+
See `SageMaker distributed data parallel TensorFlow examples
20+
<https://sagemaker-examples.readthedocs.io/en/latest/training/distributed_training/index.html#tensorflow-distributed>`__
21+
for additional details on how to implement the data parallel library.
2122

2223
- First import the distributed data parallel library’s TensorFlow client and initialize it:
2324

@@ -156,8 +157,7 @@ TensorFlow API
156157

157158
.. rubric:: Supported versions
158159

159-
- TensorFlow 2.x - 2.3.1
160-
160+
**TensorFlow 2.3.1, 2.4.1, 2.5.0**
161161

162162
.. function:: smdistributed.dataparallel.tensorflow.init()
163163

@@ -443,7 +443,7 @@ TensorFlow API
443443

444444
*  Supported compression types - ``none``, ``fp16``
445445

446-
- ``sparse_as_dense:`` Not supported. Raises not supported error.
446+
- ``sparse_as_dense:`` Treats sparse gradient tensor as dense tensor. Defaults to ``False``.
447447

448448
- ``op (smdistributed.dataparallel.tensorflow.ReduceOp)(optional)``: The reduction operation to combine tensors across different ranks. Defaults to ``Average`` if None is given.
449449

@@ -482,6 +482,8 @@ TensorFlow API
482482

483483
*  Supported compression types - ``none``, ``fp16``
484484

485+
- ``sparse_as_dense:`` Treats sparse gradient tensor as dense tensor. Defaults to ``False``.
486+
485487
- ``op (smdistributed.dataparallel.tensorflow.ReduceOp)(optional)``: The reduction operation to combine tensors across different ranks. Defaults to ``Average`` if None is given.
486488

487489
* Supported ops: ``AVERAGE``

0 commit comments

Comments
 (0)