@@ -384,42 +384,6 @@ def test_deploy_model_and_update_endpoint(
384
384
assert new_config ["ProductionVariants" ][0 ]["InitialInstanceCount" ] == 1
385
385
386
386
387
- @pytest .mark .skipif (
388
- tests .integ .test_region () not in tests .integ .EI_SUPPORTED_REGIONS ,
389
- reason = "EI isn't supported in that specific region." ,
390
- )
391
- def test_deploy_model_with_accelerator (
392
- mxnet_training_job ,
393
- sagemaker_session ,
394
- mxnet_eia_latest_version ,
395
- mxnet_eia_latest_py_version ,
396
- cpu_instance_type ,
397
- ):
398
- endpoint_name = unique_name_from_base ("test-mxnet-deploy-model-ei" )
399
-
400
- with timeout_and_delete_endpoint_by_name (endpoint_name , sagemaker_session ):
401
- desc = sagemaker_session .sagemaker_client .describe_training_job (
402
- TrainingJobName = mxnet_training_job
403
- )
404
- model_data = desc ["ModelArtifacts" ]["S3ModelArtifacts" ]
405
- script_path = os .path .join (DATA_DIR , "mxnet_mnist" , "mnist_ei.py" )
406
- model = MXNetModel (
407
- model_data ,
408
- "SageMakerRole" ,
409
- entry_point = script_path ,
410
- framework_version = mxnet_eia_latest_version ,
411
- py_version = mxnet_eia_latest_py_version ,
412
- sagemaker_session = sagemaker_session ,
413
- )
414
- predictor = model .deploy (
415
- 1 , cpu_instance_type , endpoint_name = endpoint_name , accelerator_type = "ml.eia1.medium"
416
- )
417
-
418
- data = numpy .zeros (shape = (1 , 1 , 28 , 28 ))
419
- result = predictor .predict (data )
420
- assert result is not None
421
-
422
-
423
387
def test_deploy_model_with_serverless_inference_config (
424
388
mxnet_training_job ,
425
389
sagemaker_session ,
0 commit comments