Skip to content

Commit 2540a55

Browse files
author
Ignacio Quintero
committed
Add an example for local mode deployment of models
If there is an existing model it can be deployed locally using local mode. This feature is already present but there is no example in the README.
1 parent 704cd31 commit 2540a55

File tree

1 file changed

+24
-0
lines changed

1 file changed

+24
-0
lines changed

README.rst

Lines changed: 24 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -192,6 +192,30 @@ instance type.
192192
mxnet_estimator.delete_endpoint()
193193
194194
195+
If you have an existing model and would like to deploy it locally you can do that as well. If you don't
196+
specify a sagemaker_session argument to the MXNetModel constructor, the right session will be generated
197+
when calling model.deploy()
198+
199+
Here is an end to end example:
200+
201+
.. code:: python
202+
203+
import numpy
204+
from sagemaker.mxnet import MXNetModel
205+
206+
model_location = 's3://mybucket/my_model.tar.gz'
207+
code_location = 's3://mybucket/sourcedir.tar.gz'
208+
s3_model = MXNetModel(model_data=model_location, role='SageMakerRole',
209+
entry_point='mnist.py', source_dir=code_location)
210+
211+
predictor = s3_model.deploy(initial_instance_count=1, instance_type='local')
212+
data = numpy.zeros(shape=(1, 1, 28, 28))
213+
predictor.predict(data)
214+
215+
# Tear down the endpoint container
216+
predictor.delete_endpoint()
217+
218+
195219
For detailed examples of running docker in local mode, see:
196220

197221
- `TensorFlow local mode example notebook <https://github.com/awslabs/amazon-sagemaker-examples/blob/master/sagemaker-python-sdk/tensorflow_distributed_mnist/tensorflow_local_mode_mnist.ipynb>`__.

0 commit comments

Comments
 (0)