@@ -48,7 +48,7 @@ def __init__(
48
48
tags = None ,
49
49
network_config = None ,
50
50
):
51
- """Initialize a ``Processor`` instance. The ``Processor`` handles Amazon
51
+ """Initializes a ``Processor`` instance. The ``Processor`` handles Amazon
52
52
SageMaker Processing tasks.
53
53
54
54
Args:
@@ -118,7 +118,7 @@ def run(
118
118
job_name = None ,
119
119
experiment_config = None ,
120
120
):
121
- """Run a processing job.
121
+ """Runs a processing job.
122
122
123
123
Args:
124
124
inputs (list[:class:`~sagemaker.processing.ProcessingInput`]): Input files for
@@ -164,7 +164,7 @@ def run(
164
164
self .latest_job .wait (logs = logs )
165
165
166
166
def _generate_current_job_name (self , job_name = None ):
167
- """Generate the job name before running a processing job.
167
+ """Generates the job name before running a processing job.
168
168
169
169
Args:
170
170
job_name (str): Name of the processing job to be created. If not
@@ -185,7 +185,7 @@ def _generate_current_job_name(self, job_name=None):
185
185
return name_from_base (base_name )
186
186
187
187
def _normalize_inputs (self , inputs = None ):
188
- """Ensure that all the ``ProcessingInput`` objects have names and S3 URIs.
188
+ """Ensures that all the ``ProcessingInput`` objects have names and S3 URIs.
189
189
190
190
Args:
191
191
inputs (list[sagemaker.processing.ProcessingInput]): A list of ``ProcessingInput``
@@ -230,7 +230,7 @@ def _normalize_inputs(self, inputs=None):
230
230
return normalized_inputs
231
231
232
232
def _normalize_outputs (self , outputs = None ):
233
- """Ensure that all the outputs are ``ProcessingOutput`` objects with
233
+ """Ensures that all the outputs are ``ProcessingOutput`` objects with
234
234
names and S3 URIs.
235
235
236
236
Args:
@@ -291,7 +291,7 @@ def __init__(
291
291
tags = None ,
292
292
network_config = None ,
293
293
):
294
- """Initialize a ``ScriptProcessor`` instance. The ``ScriptProcessor``
294
+ """Initializes a ``ScriptProcessor`` instance. The ``ScriptProcessor``
295
295
handles Amazon SageMaker Processing tasks for jobs using a machine learning framework.
296
296
297
297
Args:
@@ -362,7 +362,7 @@ def run(
362
362
job_name = None ,
363
363
experiment_config = None ,
364
364
):
365
- """Run a processing job.
365
+ """Runs a processing job.
366
366
367
367
Args:
368
368
code (str): This can be an S3 URI or a local path to
@@ -545,7 +545,7 @@ def __init__(self, sagemaker_session, job_name, inputs, outputs, output_kms_key=
545
545
546
546
@classmethod
547
547
def start_new (cls , processor , inputs , outputs , experiment_config ):
548
- """Start a new processing job using the provided inputs and outputs.
548
+ """Starts a new processing job using the provided inputs and outputs.
549
549
550
550
Args:
551
551
processor (:class:`~sagemaker.processing.Processor`): The ``Processor`` instance
@@ -747,7 +747,7 @@ def __init__(
747
747
s3_data_distribution_type = "FullyReplicated" ,
748
748
s3_compression_type = "None" ,
749
749
):
750
- """Initialize a ``ProcessingInput`` instance. ``ProcessingInput`` accepts parameters
750
+ """Initializes a ``ProcessingInput`` instance. ``ProcessingInput`` accepts parameters
751
751
that specify an Amazon S3 input for a processing job and provides a method
752
752
to turn those parameters into a dictionary.
753
753
@@ -801,7 +801,7 @@ class ProcessingOutput(object):
801
801
a method to turn those parameters into a dictionary."""
802
802
803
803
def __init__ (self , source , destination = None , output_name = None , s3_upload_mode = "EndOfJob" ):
804
- """Initialize a ``ProcessingOutput`` instance. ``ProcessingOutput`` accepts parameters that
804
+ """Initializes a ``ProcessingOutput`` instance. ``ProcessingOutput`` accepts parameters that
805
805
specify an Amazon S3 output for a processing job and provides a method to turn
806
806
those parameters into a dictionary.
807
807
0 commit comments