@@ -577,6 +577,11 @@ Here is an example:
577
577
Use Prebuilt Models with SageMaker JumpStart
578
578
********************************************
579
579
580
+ .. toctree ::
581
+ :maxdepth: 2
582
+
583
+ doc_utils/jumpstart
584
+
580
585
`Amazon SageMaker JumpStart <https://aws.amazon.com/sagemaker/getting-started/ >`__ is a
581
586
SageMaker feature that helps users bring machine learning (ML)
582
587
applications to market using prebuilt solutions for common use cases,
@@ -628,11 +633,11 @@ the ``model_id`` and ``model_version`` needed to retrieve the URI.
628
633
629
634
- ``model_id ``: A unique identifier for the JumpStart model.
630
635
- ``model_version ``: The version of the specifications for the
631
- model. To use the latest version, enter ``* ``. This is a
636
+ model. To use the latest version, enter ``"*" ``. This is a
632
637
required parameter.
633
638
634
639
To retrieve a model, first select a ``model id `` and ``version `` from
635
- the Available Models .
640
+ the :doc: ` available models < ./doc_utils/jumpstart >` .
636
641
637
642
.. code :: python
638
643
@@ -652,7 +657,7 @@ Then use those values to retrieve the model as follows.
652
657
JumpStart scripts
653
658
-----------------
654
659
655
- To adapt JumpStart models for the SageMaker Python SDK , a custom
660
+ To adapt JumpStart models for SageMaker, a custom
656
661
script is needed to perform training or inference. JumpStart
657
662
maintains a suite of scripts used for each of the models in the
658
663
JumpStart S3 bucket, which can be accessed using the SageMaker Python
@@ -741,6 +746,7 @@ see `Model <https://sagemaker.readthedocs.io/en/stable/api/inference/model.html
741
746
.. code :: python
742
747
743
748
from sagemaker.model import Model
749
+ from sagemaker.predictor import Predictor
744
750
from sagemaker.session import Session
745
751
746
752
# Create the SageMaker model instance
@@ -750,6 +756,7 @@ see `Model <https://sagemaker.readthedocs.io/en/stable/api/inference/model.html
750
756
source_dir = script_uri,
751
757
entry_point = " inference.py" ,
752
758
role = Session().get_caller_identity_arn(),
759
+ predictor_cls = Predictor,
753
760
)
754
761
755
762
Save the output from deploying the model to a variable named
@@ -761,15 +768,12 @@ Deployment may take about 5 minutes.
761
768
762
769
.. code :: python
763
770
764
- from sagemaker.predictor import Predictor
765
-
766
771
predictor = model.deploy(
767
772
initial_instance_count = instance_count,
768
773
instance_type = instance_type,
769
- predictor_cls = Predictor
770
774
)
771
775
772
- Because ``catboost `` relies on the PyTorch Deep Learning Containers
776
+ Because ``catboost `` and `` lightgbm `` rely on the PyTorch Deep Learning Containers
773
777
image, the corresponding Models and Endpoints display the “pytorch”
774
778
prefix when viewed in the AWS console. To verify that these models
775
779
were created successfully with your desired base model, refer to
@@ -780,7 +784,7 @@ Perform Inference
780
784
781
785
Finally, use the ``predictor`` instance to query your endpoint. For
782
786
``catboost-classification-model ``, for example, the predictor accepts
783
- a string . For more information about how to use the predictor, see
787
+ a csv . For more information about how to use the predictor, see
784
788
the
785
789
`Appendix <https://sagemaker.readthedocs.io/en/stable/overview.html#appendix >`__.
786
790
@@ -807,9 +811,8 @@ using “training” as the model scope. Use the utility functions to
807
811
retrieve the URI of each of the three components you need to
808
812
continue. The HuggingFace model in this example requires a GPU
809
813
instance, so use the ``ml.p3.2xlarge `` instance type. For a complete
810
- list of available SageMaker instance types , see `Available SageMaker
811
- Studio Instance
812
- Types <https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-available-instance-types.html>`__.
814
+ list of available SageMaker instance types, see the `SageMaker On-Demand Pricing
815
+ Table <https://aws.amazon.com/sagemaker/pricing/#On-Demand_Pricing> `__ and select 'Training'.
813
816
814
817
.. code :: python
815
818
@@ -970,45 +973,45 @@ ContentType of ``application/list-text``.
970
973
971
974
.. container ::
972
975
973
- +-----------------------+-----------------------+-----------------------+
974
- | Task | Identifier | ContentType |
975
- +-----------------------+-----------------------+-----------------------+
976
- | Image Classification | ic | "application/x-image" |
977
- +-----------------------+-----------------------+-----------------------+
978
- | Object Detection | od, od1 | "application/x-image" |
979
- +-----------------------+-----------------------+-----------------------+
980
- | Semantic Segmentation | semseg | "application/x-image" |
981
- +-----------------------+-----------------------+-----------------------+
982
- | Instance Segmentation | is | "application/x-image" |
983
- +-----------------------+-----------------------+-----------------------+
984
- | Text Classification | tc | "application/x-text" |
985
- +-----------------------+-----------------------+-----------------------+
986
- | Sentence Pair | spc | "a |
987
- | Classification | | pplication/list-text" |
988
- +-----------------------+-----------------------+-----------------------+
989
- | Extractive Question | eqa | "a |
990
- | Answering | | pplication/list-text" |
991
- +-----------------------+-----------------------+-----------------------+
992
- | Text Generation | textgeneration | "application/x-text" |
993
- +-----------------------+-----------------------+-----------------------+
994
- | Image Classification | icembedding | "application/x-image" |
995
- | Embedding | | |
996
- +-----------------------+-----------------------+-----------------------+
997
- | Text Classification | tcembedding | "application/x-text" |
998
- | Embedding | | |
999
- +-----------------------+-----------------------+-----------------------+
1000
- | Named-entity | ner | "application/x-text" |
1001
- | Recognition | | |
1002
- +-----------------------+-----------------------+-----------------------+
1003
- | Text Summarization | summarization | "application/x-text" |
1004
- +-----------------------+-----------------------+-----------------------+
1005
- | Text Translation | translation | "application/x-text" |
1006
- +-----------------------+-----------------------+-----------------------+
1007
- | Tabular Regression | regression | "text/csv" |
1008
- +-----------------------+-----------------------+-----------------------+
1009
- | Tabular | classification | "text/csv" |
1010
- | Classification | | |
1011
- +-----------------------+-----------------------+-----------------------+
976
+ +-----------------------+-----------------------+------------------------- +
977
+ | Task | Identifier | ContentType |
978
+ +-----------------------+-----------------------+------------------------- +
979
+ | Image Classification | ic | "application/x-image" |
980
+ +-----------------------+-----------------------+------------------------- +
981
+ | Object Detection | od, od1 | "application/x-image" |
982
+ +-----------------------+-----------------------+------------------------- +
983
+ | Semantic Segmentation | semseg | "application/x-image" |
984
+ +-----------------------+-----------------------+------------------------- +
985
+ | Instance Segmentation | is | "application/x-image" |
986
+ +-----------------------+-----------------------+------------------------- +
987
+ | Text Classification | tc | "application/x-text" |
988
+ +-----------------------+-----------------------+------------------------- +
989
+ | Sentence Pair | spc | "application/list-text" |
990
+ | Classification | | |
991
+ +-----------------------+-----------------------+------------------------- +
992
+ | Extractive Question | eqa | "application/list-text" |
993
+ | Answering | | |
994
+ +-----------------------+-----------------------+------------------------- +
995
+ | Text Generation | textgeneration | "application/x-text" |
996
+ +-----------------------+-----------------------+------------------------- +
997
+ | Image Classification | icembedding | "application/x-image" |
998
+ | Embedding | | |
999
+ +-----------------------+-----------------------+------------------------- +
1000
+ | Text Classification | tcembedding | "application/x-text" |
1001
+ | Embedding | | |
1002
+ +-----------------------+-----------------------+------------------------- +
1003
+ | Named-entity | ner | "application/x-text" |
1004
+ | Recognition | | |
1005
+ +-----------------------+-----------------------+------------------------- +
1006
+ | Text Summarization | summarization | "application/x-text" |
1007
+ +-----------------------+-----------------------+------------------------- +
1008
+ | Text Translation | translation | "application/x-text" |
1009
+ +-----------------------+-----------------------+------------------------- +
1010
+ | Tabular Regression | regression | "text/csv" |
1011
+ +-----------------------+-----------------------+------------------------- +
1012
+ | Tabular | classification | "text/csv" |
1013
+ | Classification | | |
1014
+ +-----------------------+-----------------------+------------------------- +
1012
1015
1013
1016
********************************
1014
1017
SageMaker Automatic Model Tuning
0 commit comments