@@ -4,7 +4,7 @@ Chainer SageMaker Estimators and Models
4
4
5
5
With Chainer Estimators, you can train and host Chainer models on Amazon SageMaker.
6
6
7
- Supported versions of Chainer: ``4.0.0 ``, ``4.1.0 ``
7
+ Supported versions of Chainer: ``4.0.0 ``, ``4.1.0 ``, `` 5.0.0 ``
8
8
9
9
You can visit the Chainer repository at https://github.com/chainer/chainer.
10
10
@@ -32,7 +32,7 @@ Suppose that you already have an Chainer training script called
32
32
role = ' SageMakerRole' ,
33
33
train_instance_type = ' ml.p3.2xlarge' ,
34
34
train_instance_count = 1 ,
35
- framework_version = ' 4.1 .0' )
35
+ framework_version = ' 5.0 .0' )
36
36
chainer_estimator.fit(' s3://bucket/path/to/training/data' )
37
37
38
38
Where the S3 URL is a path to your training data, within Amazon S3. The constructor keyword arguments define how
@@ -111,7 +111,7 @@ directories ('train' and 'test').
111
111
chainer_estimator = Chainer(' chainer-train.py' ,
112
112
train_instance_type = ' ml.p3.2xlarge' ,
113
113
train_instance_count = 1 ,
114
- framework_version = ' 4.1 .0' ,
114
+ framework_version = ' 5.0 .0' ,
115
115
hyperparameters = {' epochs' : 20 , ' batch-size' : 64 , ' learning-rate' : 0.1 })
116
116
chainer_estimator.fit({' train' : ' s3://my-data-bucket/path/to/my/training/data' ,
117
117
' test' : ' s3://my-data-bucket/path/to/my/test/data' })
@@ -285,7 +285,7 @@ operation.
285
285
chainer_estimator = Chainer(entry_point = ' train_and_deploy.py' ,
286
286
train_instance_type = ' ml.p3.2xlarge' ,
287
287
train_instance_count = 1 ,
288
- framework_version = ' 4.1 .0' )
288
+ framework_version = ' 5.0 .0' )
289
289
chainer_estimator.fit(' s3://my_bucket/my_training_data/' )
290
290
291
291
# Deploy my estimator to a SageMaker Endpoint and get a Predictor
@@ -631,38 +631,38 @@ This Python version applies to both the Training Job, created by fit, and the En
631
631
632
632
The Chainer Docker images have the following dependencies installed:
633
633
634
- +-----------------------------+-------------+
635
- | Dependencies | chainer 4.0 |
636
- +-----------------------------+-------------+
637
- | chainer | 4.0.0 |
638
- +-----------------------------+-------------+
639
- | chainercv | 0.9.0 |
640
- +-----------------------------+-------------+
641
- | chainermn | 1.2.0 |
642
- +-----------------------------+-------------+
643
- | CUDA (GPU image only) | 9.0 |
644
- +-----------------------------+-------------+
645
- | cupy | 4.0.0 |
646
- +-----------------------------+-------------+
647
- | matplotlib | 2.2.0 |
648
- +-----------------------------+-------------+
649
- | mpi4py | 3.0.0 |
650
- +-----------------------------+-------------+
651
- | numpy | 1.14.3 |
652
- +-----------------------------+-------------+
653
- | opencv-python | 3.4.0.12 |
654
- +-----------------------------+-------------+
655
- | Pillow | 5.1.0 |
656
- +-----------------------------+-------------+
657
- | Python | 2.7 or 3.5 |
658
- +-----------------------------+-------------+
634
+ +-----------------------------+-------------+-------------+-------------+
635
+ | Dependencies | chainer 4.0 | chainer 4.1 | chainer 5.0 |
636
+ +-----------------------------+-------------+-------------+-------------+
637
+ | chainer | 4.0.0 | 4.1.0 | 5.0.0 |
638
+ +-----------------------------+-------------+-------------+-------------+
639
+ | chainercv | 0.9.0 | 0.10.0 | 0.10.0 |
640
+ +-----------------------------+-------------+-------------+-------------+
641
+ | chainermn | 1.2.0 | 1.3.0 | N/A |
642
+ +-----------------------------+-------------+-------------+-------------+
643
+ | CUDA (GPU image only) | 9.0 | 9.0 | 9.0 |
644
+ +-----------------------------+-------------+-------------+-------------+
645
+ | cupy | 4.0.0 | 4.1.0 | 5.0.0 |
646
+ +-----------------------------+-------------+-------------+-------------+
647
+ | matplotlib | 2.2.0 | 2.2.0 | 2.2.0 |
648
+ +-----------------------------+-------------+-------------+-------------+
649
+ | mpi4py | 3.0.0 | 3.0.0 | 3.0.0 |
650
+ +-----------------------------+-------------+-------------+-------------+
651
+ | numpy | 1.14.3 | 1.15.3 | 1.15.4 |
652
+ +-----------------------------+-------------+-------------+-------------+
653
+ | opencv-python | 3.4.0.12 | 3.4.0.12 | 3.4.0.12 |
654
+ +-----------------------------+-------------+-------------+-------------+
655
+ | Pillow | 5.1.0 | 5.3.0 | 5.3.0 |
656
+ +-----------------------------+-------------+-------------+-------------+
657
+ | Python | 2.7 or 3.5 | 2.7 or 3.5 | 2.7 or 3.5 |
658
+ +-----------------------------+-------------+-------------+-------------+
659
659
660
660
The Docker images extend Ubuntu 16.04.
661
661
662
- You can select version of Chainer by passing a framework_version keyword arg to the Chainer Estimator constructor.
663
- Currently supported versions are listed in the above table. You can also set framework_version to only specify major and
664
- minor version, which will cause your training script to be run on the latest supported patch version of that minor
665
- version.
662
+ You must select a version of Chainer by passing a `` framework_version `` keyword arg to the Chainer Estimator
663
+ constructor. Currently supported versions are listed in the above table. You can also set framework_version to only
664
+ specify major and minor version, which will cause your training script to be run on the latest supported patch
665
+ version of that minor version .
666
666
667
667
Alternatively, you can build your own image by following the instructions in the SageMaker Chainer containers
668
668
repository, and passing ``image_name `` to the Chainer Estimator constructor.
0 commit comments