|
| 1 | +# Copyright 2019-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"). You |
| 4 | +# may not use this file except in compliance with the License. A copy of |
| 5 | +# the License is located at |
| 6 | +# |
| 7 | +# http://aws.amazon.com/apache2.0/ |
| 8 | +# |
| 9 | +# or in the "license" file accompanying this file. This file is |
| 10 | +# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF |
| 11 | +# ANY KIND, either express or implied. See the License for the specific |
| 12 | +# language governing permissions and limitations under the License. |
| 13 | +"""Placeholder docstring""" |
| 14 | +from __future__ import absolute_import |
| 15 | + |
| 16 | +import logging |
| 17 | +import re |
| 18 | + |
| 19 | +from sagemaker.deprecations import renamed_kwargs |
| 20 | +from sagemaker.estimator import Framework |
| 21 | +from sagemaker.fw_utils import ( |
| 22 | + framework_name_from_image, |
| 23 | + warn_if_parameter_server_with_multi_gpu, |
| 24 | + validate_smdistributed, |
| 25 | +) |
| 26 | +from sagemaker.vpc_utils import VPC_CONFIG_DEFAULT |
| 27 | + |
| 28 | +logger = logging.getLogger("sagemaker") |
| 29 | + |
| 30 | + |
| 31 | +class HuggingFace(Framework): |
| 32 | + """Handle training of custom HuggingFace code.""" |
| 33 | + |
| 34 | + _framework_name = "huggingface" |
| 35 | + |
| 36 | + def __init__( |
| 37 | + self, |
| 38 | + py_version, |
| 39 | + entry_point, |
| 40 | + transformers_version=None, |
| 41 | + tensorflow_version=None, |
| 42 | + pytorch_version=None, |
| 43 | + source_dir=None, |
| 44 | + hyperparameters=None, |
| 45 | + image_uri=None, |
| 46 | + distribution=None, |
| 47 | + **kwargs |
| 48 | + ): |
| 49 | + """This ``Estimator`` executes a HuggingFace script in a managed execution environment. |
| 50 | +
|
| 51 | + The managed HuggingFace environment is an Amazon-built Docker container that executes |
| 52 | + functions defined in the supplied ``entry_point`` Python script within a SageMaker |
| 53 | + Training Job. |
| 54 | +
|
| 55 | + Training is started by calling |
| 56 | + :meth:`~sagemaker.amazon.estimator.Framework.fit` on this Estimator. |
| 57 | +
|
| 58 | + Args: |
| 59 | + py_version (str): Python version you want to use for executing your model training |
| 60 | + code. Defaults to ``None``. Required unless ``image_uri`` is provided. List |
| 61 | + of supported versions: |
| 62 | + https://github.com/aws/sagemaker-python-sdk#huggingface-sagemaker-estimators |
| 63 | + entry_point (str): Path (absolute or relative) to the Python source |
| 64 | + file which should be executed as the entry point to training. |
| 65 | + If ``source_dir`` is specified, then ``entry_point`` |
| 66 | + must point to a file located at the root of ``source_dir``. |
| 67 | + transformers_version (str): Transformers version you want to use for |
| 68 | + executing your model training code. Defaults to ``None``. Required unless |
| 69 | + ``image_uri`` is provided. List of supported versions: |
| 70 | + https://github.com/aws/sagemaker-python-sdk#huggingface-sagemaker-estimators. |
| 71 | + tensorflow_version (str): TensorFlow version you want to use for |
| 72 | + executing your model training code. Defaults to ``None``. Required unless |
| 73 | + ``pytorch_version`` is provided. List of supported versions: |
| 74 | + https://github.com/aws/sagemaker-python-sdk#huggingface-sagemaker-estimators. |
| 75 | + pytorch_version (str): PyTorch version you want to use for |
| 76 | + executing your model training code. Defaults to ``None``. Required unless |
| 77 | + ``tensorflow_version`` is provided. List of supported versions: |
| 78 | + https://github.com/aws/sagemaker-python-sdk#huggingface-sagemaker-estimators. |
| 79 | + source_dir (str): Path (absolute, relative or an S3 URI) to a directory |
| 80 | + with any other training source code dependencies aside from the entry |
| 81 | + point file (default: None). If ``source_dir`` is an S3 URI, it must |
| 82 | + point to a tar.gz file. Structure within this directory are preserved |
| 83 | + when training on Amazon SageMaker. |
| 84 | + hyperparameters (dict): Hyperparameters that will be used for |
| 85 | + training (default: None). The hyperparameters are made |
| 86 | + accessible as a dict[str, str] to the training code on |
| 87 | + SageMaker. For convenience, this accepts other types for keys |
| 88 | + and values, but ``str()`` will be called to convert them before |
| 89 | + training. |
| 90 | + image_uri (str): If specified, the estimator will use this image |
| 91 | + for training and hosting, instead of selecting the appropriate |
| 92 | + SageMaker official image based on framework_version and |
| 93 | + py_version. It can be an ECR url or dockerhub image and tag. |
| 94 | + Examples: |
| 95 | + * ``123412341234.dkr.ecr.us-west-2.amazonaws.com/my-custom-image:1.0`` |
| 96 | + * ``custom-image:latest`` |
| 97 | +
|
| 98 | + If ``framework_version`` or ``py_version`` are ``None``, then |
| 99 | + ``image_uri`` is required. If also ``None``, then a ``ValueError`` |
| 100 | + will be raised. |
| 101 | + distribution (dict): A dictionary with information on how to run distributed training |
| 102 | + (default: None). Currently, the following are supported: |
| 103 | + distributed training with parameter servers, SageMaker Distributed (SMD) Data |
| 104 | + and Model Parallelism, and MPI. SMD Model Parallelism can only be used with MPI. |
| 105 | + To enable parameter server use the following setup: |
| 106 | +
|
| 107 | + .. code:: python |
| 108 | +
|
| 109 | + { |
| 110 | + "parameter_server": { |
| 111 | + "enabled": True |
| 112 | + } |
| 113 | + } |
| 114 | +
|
| 115 | + To enable MPI: |
| 116 | +
|
| 117 | + .. code:: python |
| 118 | +
|
| 119 | + { |
| 120 | + "mpi": { |
| 121 | + "enabled": True |
| 122 | + } |
| 123 | + } |
| 124 | +
|
| 125 | + To enable SMDistributed Data Parallel or Model Parallel: |
| 126 | +
|
| 127 | + .. code:: python |
| 128 | +
|
| 129 | + { |
| 130 | + "smdistributed": { |
| 131 | + "dataparallel": { |
| 132 | + "enabled": True |
| 133 | + }, |
| 134 | + "modelparallel": { |
| 135 | + "enabled": True, |
| 136 | + "parameters": {} |
| 137 | + } |
| 138 | + } |
| 139 | + } |
| 140 | +
|
| 141 | + **kwargs: Additional kwargs passed to the :class:`~sagemaker.estimator.Framework` |
| 142 | + constructor. |
| 143 | +
|
| 144 | + .. tip:: |
| 145 | +
|
| 146 | + You can find additional parameters for initializing this class at |
| 147 | + :class:`~sagemaker.estimator.Framework` and |
| 148 | + :class:`~sagemaker.estimator.EstimatorBase`. |
| 149 | + """ |
| 150 | + self.framework_version = transformers_version |
| 151 | + self.py_version = py_version |
| 152 | + self.tensorflow_version = tensorflow_version |
| 153 | + self.pytorch_version = pytorch_version |
| 154 | + |
| 155 | + self._validate_args(image_uri=image_uri) |
| 156 | + |
| 157 | + if distribution is not None: |
| 158 | + instance_type = renamed_kwargs( |
| 159 | + "train_instance_type", "instance_type", kwargs.get("instance_type"), kwargs |
| 160 | + ) |
| 161 | + |
| 162 | + base_framework_name = "tensorflow" if tensorflow_version is not None else "pytorch" |
| 163 | + base_framework_version = ( |
| 164 | + tensorflow_version if tensorflow_version is not None else pytorch_version |
| 165 | + ) |
| 166 | + |
| 167 | + validate_smdistributed( |
| 168 | + instance_type=instance_type, |
| 169 | + framework_name=base_framework_name, |
| 170 | + framework_version=base_framework_version, |
| 171 | + py_version=self.py_version, |
| 172 | + distribution=distribution, |
| 173 | + image_uri=image_uri, |
| 174 | + ) |
| 175 | + |
| 176 | + warn_if_parameter_server_with_multi_gpu( |
| 177 | + training_instance_type=instance_type, distribution=distribution |
| 178 | + ) |
| 179 | + |
| 180 | + if "enable_sagemaker_metrics" not in kwargs: |
| 181 | + kwargs["enable_sagemaker_metrics"] = True |
| 182 | + |
| 183 | + super(HuggingFace, self).__init__( |
| 184 | + entry_point, source_dir, hyperparameters, image_uri=image_uri, **kwargs |
| 185 | + ) |
| 186 | + self.distribution = distribution or {} |
| 187 | + |
| 188 | + def _validate_args(self, image_uri): |
| 189 | + """Placeholder docstring""" |
| 190 | + if image_uri is not None: |
| 191 | + return |
| 192 | + if self.framework_version is None and image_uri is None: |
| 193 | + raise ValueError( |
| 194 | + "transformers_version, and image_uri are both None. " |
| 195 | + "Specify either transformers_version or image_uri" |
| 196 | + ) |
| 197 | + if self.tensorflow_version is not None and self.pytorch_version is not None: |
| 198 | + raise ValueError( |
| 199 | + "tensorflow_version and pytorch_version are both not None. " |
| 200 | + "Specify only tensorflow_version or pytorch_version." |
| 201 | + ) |
| 202 | + if self.tensorflow_version is None and self.pytorch_version is None: |
| 203 | + raise ValueError( |
| 204 | + "tensorflow_version and pytorch_version are both None. " |
| 205 | + "Specify either tensorflow_version or pytorch_version." |
| 206 | + ) |
| 207 | + |
| 208 | + def hyperparameters(self): |
| 209 | + """Return hyperparameters used by your custom PyTorch code during model training.""" |
| 210 | + hyperparameters = super(HuggingFace, self).hyperparameters() |
| 211 | + additional_hyperparameters = self._distribution_configuration( |
| 212 | + distribution=self.distribution |
| 213 | + ) |
| 214 | + hyperparameters.update(Framework._json_encode_hyperparameters(additional_hyperparameters)) |
| 215 | + return hyperparameters |
| 216 | + |
| 217 | + def create_model( |
| 218 | + self, |
| 219 | + model_server_workers=None, |
| 220 | + role=None, |
| 221 | + vpc_config_override=VPC_CONFIG_DEFAULT, |
| 222 | + entry_point=None, |
| 223 | + source_dir=None, |
| 224 | + dependencies=None, |
| 225 | + **kwargs |
| 226 | + ): |
| 227 | + """Placeholder docstring""" |
| 228 | + raise NotImplementedError("Creating model with HuggingFace training job is not supported.") |
| 229 | + |
| 230 | + @classmethod |
| 231 | + def _prepare_init_params_from_job_description(cls, job_details, model_channel_name=None): |
| 232 | + """Convert the job description to init params that can be handled by the class constructor. |
| 233 | +
|
| 234 | + Args: |
| 235 | + job_details: The returned job details from a describe_training_job |
| 236 | + API call. |
| 237 | + model_channel_name (str): Name of the channel where pre-trained |
| 238 | + model data will be downloaded. |
| 239 | +
|
| 240 | + Returns: |
| 241 | + dictionary: The transformed init_params |
| 242 | + """ |
| 243 | + init_params = super(HuggingFace, cls)._prepare_init_params_from_job_description( |
| 244 | + job_details, model_channel_name |
| 245 | + ) |
| 246 | + image_uri = init_params.pop("image_uri") |
| 247 | + framework, py_version, tag, _ = framework_name_from_image(image_uri) |
| 248 | + |
| 249 | + if tag is None: |
| 250 | + framework_version = None |
| 251 | + else: |
| 252 | + framework, pt_or_tf = framework.split("-") |
| 253 | + tag_pattern = re.compile("^(.*)-transformers(.*)-(cpu|gpu)-(py2|py3[67]?)$") |
| 254 | + tag_match = tag_pattern.match(tag) |
| 255 | + pt_or_tf_version = tag_match.group(1) |
| 256 | + framework_version = tag_match.group(2) |
| 257 | + if pt_or_tf == "pytorch": |
| 258 | + init_params["pytorch_version"] = pt_or_tf_version |
| 259 | + else: |
| 260 | + init_params["tensorflow_version"] = pt_or_tf_version |
| 261 | + |
| 262 | + init_params["transformers_version"] = framework_version |
| 263 | + init_params["py_version"] = py_version |
| 264 | + |
| 265 | + if not framework: |
| 266 | + # If we were unable to parse the framework name from the image it is not one of our |
| 267 | + # officially supported images, in this case just add the image to the init params. |
| 268 | + init_params["image_uri"] = image_uri |
| 269 | + return init_params |
| 270 | + |
| 271 | + if framework != cls._framework_name: |
| 272 | + raise ValueError( |
| 273 | + "Training job: {} didn't use image for requested framework".format( |
| 274 | + job_details["TrainingJobName"] |
| 275 | + ) |
| 276 | + ) |
| 277 | + |
| 278 | + return init_params |
0 commit comments