Skip to content

Commit 63a22d6

Browse files
authored
Add missing documentation (#575)
1 parent dd623af commit 63a22d6

File tree

10 files changed

+147
-16
lines changed

10 files changed

+147
-16
lines changed

CHANGELOG.rst

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -10,6 +10,9 @@ CHANGELOG
1010
* bug-fix: Remove ``__all__`` from ``__init__.py`` files
1111
* doc-fix: Add TFRecord split type to docs
1212
* doc-fix: Mention ``SM_HPS`` environment variable in MXNet README
13+
* doc-fix: Specify that Local Mode supports only framework and BYO cases
14+
* doc-fix: Add missing classes to API docs
15+
* doc-fix: Add information on necessary AWS permissions
1316

1417
1.16.3
1518
======

README.rst

Lines changed: 16 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -69,10 +69,23 @@ Supported Operating Systems
6969

7070
SageMaker Python SDK supports Unix/Linux and Mac.
7171

72-
Supported Python versions
72+
Supported Python Versions
7373
~~~~~~~~~~~~~~~~~~~~~~~~~
7474

75-
SageMaker Python SDK is tested on: \* Python 2.7 \* Python 3.5
75+
SageMaker Python SDK is tested on:
76+
77+
- Python 2.7
78+
- Python 3.5
79+
80+
AWS Permissions
81+
~~~~~~~~~~~~~~~
82+
83+
As a managed service, Amazon SageMaker performs operations on your behalf on the AWS hardware that is managed by Amazon SageMaker.
84+
Amazon SageMaker can perform only operations that the user permits.
85+
You can read more about which permissions are necessary in the `AWS Documentation <https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html>`__.
86+
87+
The SageMaker Python SDK should not require any additional permissions.
88+
However, if you are using an IAM role with a path in it, you should grant permission for ``iam:GetRole``.
7689

7790
Licensing
7891
~~~~~~~~~
@@ -203,6 +216,7 @@ Local Mode
203216

204217
The SageMaker Python SDK supports local mode, which allows you to create estimators and deploy them to your local environment.
205218
This is a great way to test your deep learning scripts before running them in SageMaker's managed training or hosting environments.
219+
Local Mode is supported for only frameworks (e.g. TensorFlow, MXNet) and images you supply yourself.
206220

207221
We can take the example in `Using Estimators <#using-estimators>`__ , and use either ``local`` or ``local_gpu`` as the instance type.
208222

doc/index.rst

Lines changed: 32 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -2,27 +2,28 @@ Amazon SageMaker Python SDK
22
===========================
33
Amazon SageMaker Python SDK is an open source library for training and deploying machine-learned models on Amazon SageMaker.
44

5-
With the SDK, you can train and deploy models using popular deep learning frameworks: **Apache MXNet** and **TensorFlow**. You can also train and deploy models with **algorithms provided by Amazon**, these are scalable implementations of core machine learning algorithms that are optimized for SageMaker and GPU training. If you have **your own algorithms** built into SageMaker-compatible Docker containers, you can train and host models using these as well.
5+
With the SDK, you can train and deploy models using popular deep learning frameworks, algorithms provided by Amazon, or your own algorithms built into SageMaker-compatible Docker images.
66

7-
Here you'll find API docs for SageMaker Python SDK. The project home-page is in Github: https://github.com/aws/sagemaker-python-sdk, there you can find the SDK source, installation instructions and a general overview of the library there.
7+
Here you'll find API docs for SageMaker Python SDK. The project homepage is in Github: https://github.com/aws/sagemaker-python-sdk, where you can find the SDK source, installation instructions and a general overview of the library.
88

99
Overview
10-
----------
10+
--------
1111
The SageMaker Python SDK consists of a few primary interfaces:
1212

1313
.. toctree::
1414
:maxdepth: 2
1515

1616
estimators
1717
tuner
18+
model
19+
pipeline
1820
predictors
1921
transformer
2022
session
21-
model
2223
analytics
2324

2425
MXNet
25-
----------
26+
-----
2627
A managed environment for MXNet training and hosting on Amazon SageMaker
2728

2829
.. toctree::
@@ -39,6 +40,15 @@ A managed environment for TensorFlow training and hosting on Amazon SageMaker
3940

4041
sagemaker.tensorflow
4142

43+
Scikit-Learn
44+
------------
45+
A managed enrionment for Scikit-learn training and hosting on Amazon SageMaker
46+
47+
.. toctree::
48+
:maxdepth: 2
49+
50+
sagemaker.sklearn
51+
4252
PyTorch
4353
-------
4454
A managed environment for PyTorch training and hosting on Amazon SageMaker
@@ -66,20 +76,33 @@ A managed environment for Reinforcement Learning training and hosting on Amazon
6676

6777
sagemaker.rl
6878

79+
SparkML Serving
80+
---------------
81+
A managed environment for SparkML hosting on Amazon SageMaker
82+
83+
.. toctree::
84+
:maxdepth: 2
85+
86+
sagemaker.sparkml
87+
6988
SageMaker First-Party Algorithms
7089
--------------------------------
7190
Amazon provides implementations of some common machine learning algortithms optimized for GPU architecture and massive datasets.
7291

7392
.. toctree::
7493
:maxdepth: 2
7594

76-
kmeans
77-
pca
78-
linear_learner
7995
sagemaker.amazon.amazon_estimator
8096
factorization_machines
97+
ipinsights
98+
kmeans
99+
knn
81100
lda
101+
linear_learner
82102
ntm
103+
object2vec
104+
pca
105+
randomcutforest
83106

84107
Workflows
85108
---------
@@ -88,4 +111,4 @@ SageMaker APIs to export configurations for creating and managing Airflow workfl
88111
.. toctree::
89112
:maxdepth: 2
90113

91-
sagemaker.workflow.airflow
114+
sagemaker.workflow.airflow

doc/ipinsights.rst

Lines changed: 22 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,22 @@
1+
IP Insights
2+
-----------
3+
4+
The Amazon SageMaker IP Insights algorithm.
5+
6+
.. autoclass:: sagemaker.IPInsights
7+
:members:
8+
:undoc-members:
9+
:show-inheritance:
10+
:inherited-members:
11+
:exclude-members: image, num_entity_vectors, vector_dim, batch_metrics_publish_interval, epochs, learning_rate,
12+
num_ip_encoder_layers, random_negative_sampling_rate, shuffled_negative_sampling_rate, weight_decay
13+
14+
.. autoclass:: sagemaker.IPInsightsModel
15+
:members:
16+
:undoc-members:
17+
:show-inheritance:
18+
19+
.. autoclass:: sagemaker.IPInsightsPredictor
20+
:members:
21+
:undoc-members:
22+
:show-inheritance:

doc/knn.rst

Lines changed: 22 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,22 @@
1+
K-Nearest Neighbors
2+
-------------------
3+
4+
The Amazon SageMaker K-Nearest Neighbors (k-NN) algorithm.
5+
6+
.. autoclass:: sagemaker.KNN
7+
:members:
8+
:undoc-members:
9+
:show-inheritance:
10+
:inherited-members:
11+
:exclude-members: image, k, sample_size, predictor_type, dimension_reduction_target, dimension_reduction_type,
12+
index_metric, index_type, faiss_index_ivf_nlists, faiss_index_pq_m
13+
14+
.. autoclass:: sagemaker.KNNModel
15+
:members:
16+
:undoc-members:
17+
:show-inheritance:
18+
19+
.. autoclass:: sagemaker.KNNPredictor
20+
:members:
21+
:undoc-members:
22+
:show-inheritance:

doc/ntm.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
NTM
2-
--------------------
2+
---
33

44
The Amazon SageMaker NTM algorithm.
55

doc/object2vec.rst

Lines changed: 21 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,21 @@
1+
Object2Vec
2+
----------
3+
4+
The Amazon SageMaker Object2Vec algorithm.
5+
6+
.. autoclass:: sagemaker.Object2Vec
7+
:members:
8+
:undoc-members:
9+
:show-inheritance:
10+
:inherited-members:
11+
:exclude-members: image, enc_dim, mini_batch_size, epochs, early_stopping_patience, early_stopping_tolerance,
12+
dropout, weight_decay, bucket_width, num_classes, mlp_layers, mlp_dim, mlp_activation,
13+
output_layer, optimizer, learning_rate, enc0_network, enc1_network, enc0_cnn_filter_width,
14+
enc1_cnn_filter_width, enc0_max_seq_len, enc1_max_seq_len, enc0_token_embedding_dim,
15+
enc1_token_embedding_dim, enc0_vocab_size, enc1_vocab_size, enc0_layers, enc1_layers,
16+
enc0_freeze_pretrained_embedding, enc1_freeze_pretrained_embedding
17+
18+
.. autoclass:: sagemaker.Object2VecModel
19+
:members:
20+
:undoc-members:
21+
:show-inheritance:

doc/randomcutforest.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
Random Cut Forest
2-
--------------------
2+
-----------------
33

44
The Amazon SageMaker Random Cut Forest algorithm.
55

@@ -8,7 +8,7 @@ The Amazon SageMaker Random Cut Forest algorithm.
88
:undoc-members:
99
:show-inheritance:
1010
:inherited-members:
11-
:exclude-members: image, num_trees, num_samples_per_tree, eval_metrics, MINI_BATCH_SIZE
11+
:exclude-members: image, num_trees, num_samples_per_tree, eval_metrics, feature_dim, MINI_BATCH_SIZE
1212

1313

1414
.. autoclass:: sagemaker.RandomCutForestModel

doc/sagemaker.sklearn.rst

Lines changed: 26 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,26 @@
1+
Scikit Learn
2+
============
3+
4+
Scikit Learn Estimator
5+
----------------------
6+
7+
.. autoclass:: sagemaker.sklearn.estimator.SKLearn
8+
:members:
9+
:undoc-members:
10+
:show-inheritance:
11+
12+
Scikit Learn Model
13+
------------------
14+
15+
.. autoclass:: sagemaker.sklearn.model.SKLearnModel
16+
:members:
17+
:undoc-members:
18+
:show-inheritance:
19+
20+
Scikit Learn Predictor
21+
----------------------
22+
23+
.. autoclass:: sagemaker.sklearn.model.SKLearnPredictor
24+
:members:
25+
:undoc-members:
26+
:show-inheritance:

doc/sagemaker.workflow.airflow.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -37,6 +37,6 @@ deploy_config
3737
.. autofunction:: sagemaker.workflow.airflow.deploy_config
3838

3939
deploy_config_from_estimator
40-
----------------
40+
----------------------------
4141

42-
.. autofunction:: sagemaker.workflow.airflow.deploy_config_from_estimator
42+
.. autofunction:: sagemaker.workflow.airflow.deploy_config_from_estimator

0 commit comments

Comments
 (0)