@@ -980,7 +980,7 @@ Here is an example showing you how to configure a :class:`sagemaker.workflow.mon
980
980
981
981
transform_input_param = ParameterString(
982
982
name = " transform_input" ,
983
- default_value = f " s3:// { bucket} / { prefix} /my-transform-input " ,
983
+ default_value = f " s3://my- bucket/my- prefix/my-transform-input " ,
984
984
)
985
985
986
986
# the resource configuration for the monitoring job
@@ -1017,10 +1017,12 @@ The following code sample demonstrates how to set up an on-demand batch transfor
1017
1017
transform_step_args = transform_arg,
1018
1018
monitor_configuration = data_quality_config,
1019
1019
check_job_configuration = job_config,
1020
- # no need to wait for the transform output.
1020
+ # since data quality only looks at the inputs,
1021
+ # so there is no need to wait for the transform output.
1021
1022
monitor_before_transform = True ,
1022
- # if violation is detected in the monitoring, you can skip it
1023
- # and continue running batch transform
1023
+ # if violation is detected in the monitoring, and you want to skip it
1024
+ # and continue running batch transform, you can set fail_on_violation
1025
+ # to false.
1024
1026
fail_on_violation = False ,
1025
1027
supplied_baseline_statistics = " s3://my-baseline-statistics.json" ,
1026
1028
supplied_baseline_constraints = " s3://my-baseline-constraints.json" ,
@@ -1059,7 +1061,7 @@ The same example can be extended for model quality, bias, and feature attribute
1059
1061
output_s3_uri = " s3://my-output" ,
1060
1062
# assume the model output is at column idx 10
1061
1063
inference_attribute = " _c10" ,
1062
- # remember the first column is the ground truth.
1064
+ # As pointed out previously, the first column is the ground truth.
1063
1065
ground_truth_attribute = " _c0" ,
1064
1066
)
1065
1067
from sagemaker.workflow.monitor_batch_transform_step import MonitorBatchTransformStep
@@ -1069,7 +1071,8 @@ The same example can be extended for model quality, bias, and feature attribute
1069
1071
transform_step_args = transform_arg,
1070
1072
monitor_configuration = data_quality_config,
1071
1073
check_job_configuration = job_config,
1072
- # in fact, monitor_before_transform can not be true for model quality
1074
+ # model quality job needs the transform outputs, therefore
1075
+ # monitor_before_transform can not be true for model quality
1073
1076
monitor_before_transform = False ,
1074
1077
fail_on_violation = True ,
1075
1078
supplied_baseline_statistics = " s3://my-baseline-statistics.json" ,
0 commit comments