You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: doc/overview.rst
+21-19Lines changed: 21 additions & 19 deletions
Original file line number
Diff line number
Diff line change
@@ -523,7 +523,7 @@ That is, you can bring your own model:
523
523
524
524
First, package the files for the trained model into a ``.tar.gz`` file, and upload the archive to S3.
525
525
526
-
Next, create a ``Model`` object that corresponds to the framework that you are using: `MXNetModel <https://sagemaker.readthedocs.io/en/stable/sagemaker.mxnet.html#mxnet-model>`__ or `TensorFlowModel <https://sagemaker.readthedocs.io/en/stable/sagemaker.tensorflow.html#tensorflow-model>`__.
526
+
Next, create a ``Model`` object that corresponds to the framework that you are using: `MXNetModel <file:///Users/bvveeram/Documents/GitHub/sagemaker-python-sdk/doc/_build/html/sagemaker.mxnet.html#mxnet-model>`__ or `TensorFlowModel <file:///Users/bvveeram/Documents/GitHub/sagemaker-python-sdk/doc/_build/html/sagemaker.tensorflow.html#tensorflow-model>`__.
527
527
528
528
Example code using ``MXNetModel``:
529
529
@@ -681,8 +681,8 @@ in the AWS documentation.
681
681
682
682
For more detailed explanations of the classes that this library provides for automatic model tuning, see:
683
683
684
-
- `API docs for HyperparameterTuner and parameter range classes <https://sagemaker.readthedocs.io/en/stable/tuner.html>`__
685
-
- `API docs for analytics classes <https://sagemaker.readthedocs.io/en/stable/analytics.html>`__
684
+
- `API docs for HyperparameterTuner and parameter range classes <file:///Users/bvveeram/Documents/GitHub/sagemaker-python-sdk/doc/_build/html/tuner.html>`__
685
+
- `API docs for analytics classes <file:///Users/bvveeram/Documents/GitHub/sagemaker-python-sdk/doc/_build/html/analytics.html>`__
686
686
687
687
*************************
688
688
SageMaker Batch Transform
@@ -709,7 +709,7 @@ Alternatively, if you already have a SageMaker model, you can create an instance
709
709
instance_count=1,
710
710
instance_type='ml.m4.xlarge')
711
711
712
-
For a full list of the possible options to configure by using either of these methods, see the API docs for `Estimator <https://sagemaker.readthedocs.io/en/stable/estimators.html#sagemaker.estimator.Estimator.transformer>`__ or `Transformer <https://sagemaker.readthedocs.io/en/stable/transformer.html#sagemaker.transformer.Transformer>`__.
712
+
For a full list of the possible options to configure by using either of these methods, see the API docs for `Estimator <file:///Users/bvveeram/Documents/GitHub/sagemaker-python-sdk/doc/_build/html/estimators.html#sagemaker.estimator.Estimator.transformer>`__ or `Transformer <file:///Users/bvveeram/Documents/GitHub/sagemaker-python-sdk/doc/_build/html/transformer.html#sagemaker.transformer.Transformer>`__.
713
713
714
714
After you create a ``Transformer`` object, you can invoke ``transform()`` to start a batch transform job with the S3 location of your data.
715
715
You can also specify other attributes of your data, such as the content type.
@@ -718,7 +718,7 @@ You can also specify other attributes of your data, such as the content type.
For more details about what can be specified here, see `API docs <https://sagemaker.readthedocs.io/en/stable/transformer.html#sagemaker.transformer.Transformer.transform>`__.
721
+
For more details about what can be specified here, see `API docs <file:///Users/bvveeram/Documents/GitHub/sagemaker-python-sdk/doc/_build/html/transformer.html#sagemaker.transformer.Transformer.transform>`__.
722
722
723
723
**********
724
724
Local Mode
@@ -1063,47 +1063,49 @@ You can also find these notebooks in the **Advanced Functionality** section of t
1063
1063
For information about using sample notebooks in a SageMaker notebook instance, see `Use Example Notebooks <https://docs.aws.amazon.com/sagemaker/latest/dg/howitworks-nbexamples.html>`__
1064
1064
in the AWS documentation.
1065
1065
1066
-
*******************
1066
+
********************
1067
1067
Serverless Inference
1068
-
*******************
1068
+
********************
1069
1069
1070
1070
You can use the SageMaker Python SDK to perform serverless inference on Lambda.
1071
1071
1072
1072
To deploy models to Lambda, you must complete the following prerequisites:
1073
-
1. `Package your model and inference code as a container image. <https://docs.aws.amazon.com/lambda/latest/dg/images-create.html>`_
1074
-
2. `Create a role that lists Lambda as a trusted entity. <https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html#permissions-executionrole-console>`_
1075
1073
1076
-
After completing the prerequisites, you can deploy your model to Lambda with
1077
-
the ``LambdaModel`` class.
1074
+
-`Package your model and inference code as a container image. <https://docs.aws.amazon.com/lambda/latest/dg/images-create.html>`_
1075
+
- `Create a role that lists Lambda as a trusted entity. <https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html#permissions-executionrole-console>`_
1076
+
1077
+
After completing the prerequisites, you can deploy your model to Lambda using
Once you are done performing inference on Lambda, delete the ``LambdaModel``
1098
-
and``LambdaPredictor`` instances.
1098
+
Once you are done performing inference on Lambda, free the `LambdaModel`_ and
1099
+
`LambdaPredictor`_ resources using the ``delete_model``and``delete_predictor``
1100
+
methods.
1099
1101
1100
1102
.. code:: python
1101
1103
1102
1104
model.delete_model()
1103
1105
predictor.delete_predictor()
1104
1106
1105
-
For more details, see the API reference for`LambdaModel <https://sagemaker.readthedocs.io/en/stable/api/inference/model.html#sagemaker.serverless.model.LambdaModel>`_
0 commit comments