Skip to content

Commit 9eca3ef

Browse files
committed
doc: remove duplicate faq section and fixed heading
1 parent 94d271e commit 9eca3ef

File tree

1 file changed

+1
-50
lines changed

1 file changed

+1
-50
lines changed

doc/overview.rst

Lines changed: 1 addition & 50 deletions
Original file line numberDiff line numberDiff line change
@@ -516,7 +516,7 @@ SageMaker Batch Transform
516516
*************************
517517
518518
After you train a model, you can use Amazon SageMaker Batch Transform to perform inferences with the model.
519-
Batch Transform manages all necessary compute resources, including launching instances to deploy endpoints and deleting them afterward.
519+
Batch transform manages all necessary compute resources, including launching instances to deploy endpoints and deleting them afterward.
520520
You can read more about SageMaker Batch Transform in the `AWS documentation <https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-batch.html>`__.
521521
522522
If you trained the model using a SageMaker Python SDK estimator,
@@ -767,55 +767,6 @@ A new training job channel, named ``code``, will be added with that S3 URI. Bef
767767
768768
Once the training job begins, the training container will look at the offline input ``code`` channel to install dependencies and run the entry script. This isolates the training container, so no inbound or outbound network calls can be made.
769769
770-
771-
FAQ
772-
---
773-
774-
I want to train a SageMaker Estimator with local data, how do I do this?
775-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
776-
777-
Upload the data to S3 before training. You can use the AWS Command Line Tool (the aws cli) to achieve this.
778-
779-
If you don't have the aws cli, you can install it using pip:
780-
781-
::
782-
783-
pip install awscli --upgrade --user
784-
785-
If you don't have pip or want to learn more about installing the aws cli, see the official `Amazon aws cli installation guide <http://docs.aws.amazon.com/cli/latest/userguide/installing.html>`__.
786-
787-
After you install the AWS cli, you can upload a directory of files to S3 with the following command:
788-
789-
::
790-
791-
aws s3 cp /tmp/foo/ s3://bucket/path
792-
793-
For more information about using the aws cli for manipulating S3 resources, see `AWS cli command reference <http://docs.aws.amazon.com/cli/latest/reference/s3/index.html>`__.
794-
795-
796-
How do I make predictions against an existing endpoint?
797-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
798-
Create a ``Predictor`` object and provide it with your endpoint name,
799-
then call its ``predict()`` method with your input.
800-
801-
You can use either the generic ``RealTimePredictor`` class, which by default does not perform any serialization/deserialization transformations on your input,
802-
but can be configured to do so through constructor arguments:
803-
http://sagemaker.readthedocs.io/en/stable/predictors.html
804-
805-
Or you can use the TensorFlow / MXNet specific predictor classes, which have default serialization/deserialization logic:
806-
http://sagemaker.readthedocs.io/en/stable/sagemaker.tensorflow.html#tensorflow-predictor
807-
http://sagemaker.readthedocs.io/en/stable/sagemaker.mxnet.html#mxnet-predictor
808-
809-
Example code using the TensorFlow predictor:
810-
811-
::
812-
813-
from sagemaker.tensorflow import TensorFlowPredictor
814-
815-
predictor = TensorFlowPredictor('myexistingendpoint')
816-
result = predictor.predict(['my request body'])
817-
818-
819770
BYO Model
820771
---------
821772
You can also create an endpoint from an existing model rather than training one.

0 commit comments

Comments
 (0)