|
| 1 | +# Copyright 2017-2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"). You |
| 4 | +# may not use this file except in compliance with the License. A copy of |
| 5 | +# the License is located at |
| 6 | +# |
| 7 | +# http://aws.amazon.com/apache2.0/ |
| 8 | +# |
| 9 | +# or in the "license" file accompanying this file. This file is |
| 10 | +# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF |
| 11 | +# ANY KIND, either express or implied. See the License for the specific |
| 12 | +# language governing permissions and limitations under the License. |
| 13 | +from __future__ import absolute_import |
| 14 | + |
| 15 | +import gzip |
| 16 | +import json |
| 17 | +import mxnet as mx |
| 18 | +import numpy as np |
| 19 | +import os |
| 20 | +import struct |
| 21 | + |
| 22 | + |
| 23 | +# --- this example demonstrates how to extend default behavior during model hosting --- |
| 24 | + |
| 25 | +# --- Model preparation --- |
| 26 | +# it is possible to specify own code to load the model, otherwise a default model loading takes place |
| 27 | +def model_fn(path_to_model_files): |
| 28 | + from mxnet.io import DataDesc |
| 29 | + |
| 30 | + loaded_symbol = mx.symbol.load(os.path.join(path_to_model_files, "symbol")) |
| 31 | + created_module = mx.mod.Module(symbol=loaded_symbol) |
| 32 | + created_module.bind([DataDesc("data", (1, 1, 28, 28))]) |
| 33 | + created_module.load_params(os.path.join(path_to_model_files, "params")) |
| 34 | + return created_module |
| 35 | + |
| 36 | + |
| 37 | +# --- Option 1 - provide just 1 entry point for end2end prediction --- |
| 38 | +# if this function is specified, no other overwriting described in Option 2 will have effect |
| 39 | +# returns serialized data and content type it has used |
| 40 | +def transform_fn(model, request_data, input_content_type, requested_output_content_type): |
| 41 | + # for demonstration purposes we will be calling handlers from Option2 |
| 42 | + return ( |
| 43 | + output_fn( |
| 44 | + process_request_fn(model, request_data, input_content_type), |
| 45 | + requested_output_content_type, |
| 46 | + ), |
| 47 | + requested_output_content_type, |
| 48 | + ) |
| 49 | + |
| 50 | + |
| 51 | +# --- Option 2 - overwrite container's default input/output behavior with handlers --- |
| 52 | +# there are 2 data handlers: input and output, you need to conform to their interface to fit into default execution |
| 53 | +def process_request_fn(model, data, input_content_type): |
| 54 | + if input_content_type == "text/s3_file_path": |
| 55 | + prediction_input = handle_s3_file_path(data) |
| 56 | + elif input_content_type == "application/json": |
| 57 | + prediction_input = handle_json_input(data) |
| 58 | + else: |
| 59 | + raise NotImplementedError( |
| 60 | + "This model doesnt support requested input type: " + input_content_type |
| 61 | + ) |
| 62 | + |
| 63 | + return model.predict(prediction_input) |
| 64 | + |
| 65 | + |
| 66 | +# for this example S3 path points to a file that is same format as in test/images.gz |
| 67 | +def handle_s3_file_path(path): |
| 68 | + import sys |
| 69 | + |
| 70 | + if sys.version_info.major == 2: |
| 71 | + import urlparse |
| 72 | + |
| 73 | + parse_cmd = urlparse.urlparse |
| 74 | + else: |
| 75 | + import urllib |
| 76 | + |
| 77 | + parse_cmd = urllib.parse.urlparse |
| 78 | + |
| 79 | + import boto3 |
| 80 | + from botocore.exceptions import ClientError |
| 81 | + |
| 82 | + # parse the path |
| 83 | + parsed_url = parse_cmd(path) |
| 84 | + |
| 85 | + # get S3 client |
| 86 | + s3 = boto3.resource("s3") |
| 87 | + |
| 88 | + # read file content and pass it down |
| 89 | + obj = s3.Object(parsed_url.netloc, parsed_url.path.lstrip("/")) |
| 90 | + print("loading file: " + str(obj)) |
| 91 | + |
| 92 | + try: |
| 93 | + data = obj.get()["Body"] |
| 94 | + except ClientError as ce: |
| 95 | + raise ValueError( |
| 96 | + "Can't download from S3 path: " + path + " : " + ce.response["Error"]["Message"] |
| 97 | + ) |
| 98 | + |
| 99 | + import StringIO |
| 100 | + |
| 101 | + buf = StringIO(data.read()) |
| 102 | + img = gzip.GzipFile(mode="rb", fileobj=buf) |
| 103 | + |
| 104 | + _, _, rows, cols = struct.unpack(">IIII", img.read(16)) |
| 105 | + images = np.fromstring(img.read(), dtype=np.uint8).reshape(10000, rows, cols) |
| 106 | + images = images.reshape(images.shape[0], 1, 28, 28).astype(np.float32) / 255 |
| 107 | + |
| 108 | + return mx.io.NDArrayIter(images, None, 1) |
| 109 | + |
| 110 | + |
| 111 | +# for this example it is assumed that the client is passing data that can be "directly" provided to the model |
| 112 | +def handle_json_input(data): |
| 113 | + nda = mx.nd.array(json.loads(data)) |
| 114 | + return mx.io.NDArrayIter(nda, None, 1) |
| 115 | + |
| 116 | + |
| 117 | +def output_fn(prediction_output, requested_output_content_type): |
| 118 | + # output from the model is NDArray |
| 119 | + |
| 120 | + data_to_return = prediction_output.asnumpy() |
| 121 | + |
| 122 | + if requested_output_content_type == "application/json": |
| 123 | + json.dumps(data_to_return.tolist), requested_output_content_type |
| 124 | + |
| 125 | + raise NotImplementedError( |
| 126 | + "Model doesn't support requested output type: " + requested_output_content_type |
| 127 | + ) |
0 commit comments