Skip to content

Commit b094d96

Browse files
author
Ignacio Quintero
committed
Add support for Chainer 5.0
1 parent 501eced commit b094d96

File tree

5 files changed

+8
-7
lines changed

5 files changed

+8
-7
lines changed

CHANGELOG.rst

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -10,6 +10,7 @@ CHANGELOG
1010
* feature: Add APIs to export Airflow training and tuning config
1111
* doc-fix: Fix typos in tensorflow serving documentation
1212
* doc-fix: Add estimator base classes to API docs
13+
* feature: Add support for Chainer 5.0
1314

1415
1.14.2
1516
======

README.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -358,7 +358,7 @@ Chainer SageMaker Estimators
358358
359359
By using Chainer SageMaker ``Estimators``, you can train and host Chainer models on Amazon SageMaker.
360360
361-
Supported versions of Chainer: ``4.0.0``, ``4.1.0``.
361+
Supported versions of Chainer: ``4.0.0``, ``4.1.0``, ``5.0.0``.
362362
363363
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
364364

src/sagemaker/chainer/README.rst

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ Chainer SageMaker Estimators and Models
44

55
With Chainer Estimators, you can train and host Chainer models on Amazon SageMaker.
66

7-
Supported versions of Chainer: ``4.0.0``, ``4.1.0``
7+
Supported versions of Chainer: ``4.0.0``, ``4.1.0``, ``5.0.0``
88

99
You can visit the Chainer repository at https://github.com/chainer/chainer.
1010

@@ -32,7 +32,7 @@ Suppose that you already have an Chainer training script called
3232
role='SageMakerRole',
3333
train_instance_type='ml.p3.2xlarge',
3434
train_instance_count=1,
35-
framework_version='4.1.0')
35+
framework_version='5.0.0')
3636
chainer_estimator.fit('s3://bucket/path/to/training/data')
3737
3838
Where the S3 URL is a path to your training data, within Amazon S3. The constructor keyword arguments define how
@@ -111,7 +111,7 @@ directories ('train' and 'test').
111111
chainer_estimator = Chainer('chainer-train.py',
112112
train_instance_type='ml.p3.2xlarge',
113113
train_instance_count=1,
114-
framework_version='4.1.0',
114+
framework_version='5.0.0',
115115
hyperparameters = {'epochs': 20, 'batch-size': 64, 'learning-rate': 0.1})
116116
chainer_estimator.fit({'train': 's3://my-data-bucket/path/to/my/training/data',
117117
'test': 's3://my-data-bucket/path/to/my/test/data'})
@@ -285,7 +285,7 @@ operation.
285285
chainer_estimator = Chainer(entry_point='train_and_deploy.py',
286286
train_instance_type='ml.p3.2xlarge',
287287
train_instance_count=1,
288-
framework_version='4.1.0')
288+
framework_version='5.0.0')
289289
chainer_estimator.fit('s3://my_bucket/my_training_data/')
290290
291291
# Deploy my estimator to a SageMaker Endpoint and get a Predictor

src/sagemaker/chainer/defaults.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,4 +12,4 @@
1212
# language governing permissions and limitations under the License.
1313
from __future__ import absolute_import
1414

15-
CHAINER_VERSION = '4.1.0'
15+
CHAINER_VERSION = '5.0.0'

tests/conftest.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -96,7 +96,7 @@ def pytorch_version(request):
9696
return request.param
9797

9898

99-
@pytest.fixture(scope='module', params=['4.0', '4.0.0', '4.1', '4.1.0'])
99+
@pytest.fixture(scope='module', params=['4.0', '4.0.0', '4.1', '4.1.0', '5.0', '5.0.0'])
100100
def chainer_version(request):
101101
return request.param
102102

0 commit comments

Comments
 (0)