Skip to content

Commit d44ad23

Browse files
committed
Enable more tests
1 parent e190e77 commit d44ad23

File tree

1 file changed

+113
-113
lines changed

1 file changed

+113
-113
lines changed

tests/integ/sagemaker/serve/test_serve_pt_happy.py

Lines changed: 113 additions & 113 deletions
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@
2828
from tests.integ.sagemaker.serve.constants import (
2929
PYTORCH_SQUEEZENET_RESOURCE_DIR,
3030
SERVE_SAGEMAKER_ENDPOINT_TIMEOUT,
31-
# SERVE_LOCAL_CONTAINER_TIMEOUT,
31+
SERVE_LOCAL_CONTAINER_TIMEOUT,
3232
PYTHON_VERSION_IS_NOT_310,
3333
)
3434
from tests.integ.timeout import timeout
@@ -149,36 +149,36 @@ def model_builder(request):
149149
return request.getfixturevalue(request.param)
150150

151151

152-
# @pytest.mark.skipif(
153-
# PYTHON_VERSION_IS_NOT_310,
154-
# reason="The goal of these test are to test the serving components of our feature",
155-
# )
156-
# @pytest.mark.parametrize(
157-
# "model_builder", ["model_builder_inference_spec_schema_builder"], indirect=True
158-
# )
159-
# @pytest.mark.slow_test
160-
# def test_happy_pytorch_local_container(sagemaker_session, model_builder, test_image):
161-
# logger.info("Running in LOCAL_CONTAINER mode...")
162-
# caught_ex = None
163-
#
164-
# model = model_builder.build(mode=Mode.LOCAL_CONTAINER, sagemaker_session=sagemaker_session)
165-
#
166-
# with timeout(minutes=SERVE_LOCAL_CONTAINER_TIMEOUT):
167-
# try:
168-
# logger.info("Deploying and predicting in LOCAL_CONTAINER mode...")
169-
# predictor = model.deploy()
170-
# logger.info("Local container successfully deployed.")
171-
# predictor.predict(test_image)
172-
# except Exception as e:
173-
# logger.exception("test failed")
174-
# caught_ex = e
175-
# finally:
176-
# if model.modes[str(Mode.LOCAL_CONTAINER)].container:
177-
# model.modes[str(Mode.LOCAL_CONTAINER)].container.kill()
178-
# if caught_ex:
179-
# assert (
180-
# False
181-
# ), f"{caught_ex} was thrown when running pytorch squeezenet local container test"
152+
@pytest.mark.skipif(
153+
PYTHON_VERSION_IS_NOT_310,
154+
reason="The goal of these test are to test the serving components of our feature",
155+
)
156+
@pytest.mark.parametrize(
157+
"model_builder", ["model_builder_inference_spec_schema_builder"], indirect=True
158+
)
159+
@pytest.mark.slow_test
160+
def test_happy_pytorch_local_container(sagemaker_session, model_builder, test_image):
161+
logger.info("Running in LOCAL_CONTAINER mode...")
162+
caught_ex = None
163+
164+
model = model_builder.build(mode=Mode.LOCAL_CONTAINER, sagemaker_session=sagemaker_session)
165+
166+
with timeout(minutes=SERVE_LOCAL_CONTAINER_TIMEOUT):
167+
try:
168+
logger.info("Deploying and predicting in LOCAL_CONTAINER mode...")
169+
predictor = model.deploy()
170+
logger.info("Local container successfully deployed.")
171+
predictor.predict(test_image)
172+
except Exception as e:
173+
logger.exception("test failed")
174+
caught_ex = e
175+
finally:
176+
if model.modes[str(Mode.LOCAL_CONTAINER)].container:
177+
model.modes[str(Mode.LOCAL_CONTAINER)].container.kill()
178+
if caught_ex:
179+
assert (
180+
False
181+
), f"{caught_ex} was thrown when running pytorch squeezenet local container test"
182182

183183

184184
@pytest.mark.skipif(
@@ -223,85 +223,85 @@ def test_happy_pytorch_sagemaker_endpoint(
223223
), f"{caught_ex} was thrown when running pytorch squeezenet sagemaker endpoint test"
224224

225225

226-
# @pytest.mark.skipif(
227-
# NOT_RUNNING_ON_INF_EXP_DEV_PIPELINE or PYTHON_VERSION_IS_NOT_310,
228-
# reason="The goal of these test are to test the serving components of our feature",
229-
# )
230-
# @pytest.mark.parametrize(
231-
# "model_builder", ["model_builder_inference_spec_schema_builder"], indirect=True
232-
# )
233-
# def test_happy_pytorch_local_container_overwrite_to_sagemaker_endpoint(
234-
# sagemaker_session, model_builder, cpu_instance_type, test_image
235-
# ):
236-
# logger.info("Building model in LOCAL_CONTAINER mode...")
237-
# caught_ex = None
238-
239-
# iam_client = sagemaker_session.boto_session.client("iam")
240-
# role_arn = iam_client.get_role(RoleName=ROLE_NAME)["Role"]["Arn"]
241-
# logger.debug("Role arn: %s", role_arn)
242-
243-
# model = model_builder.build(
244-
# mode=Mode.LOCAL_CONTAINER, role_arn=role_arn, sagemaker_session=sagemaker_session
245-
# )
246-
247-
# with timeout(minutes=SERVE_SAGEMAKER_ENDPOINT_TIMEOUT):
248-
# try:
249-
# logger.info("Deploying and predicting in SAGEMAKER_ENDPOINT mode...")
250-
# predictor = model.deploy(
251-
# instance_type=cpu_instance_type,
252-
# initial_instance_count=1,
253-
# mode=Mode.SAGEMAKER_ENDPOINT,
254-
# )
255-
# logger.info("Endpoint successfully deployed.")
256-
# predictor.predict(test_image)
257-
# except Exception as e:
258-
# caught_ex = e
259-
# finally:
260-
# cleanup_model_resources(
261-
# sagemaker_session=model_builder.sagemaker_session,
262-
# model_name=model.name,
263-
# endpoint_name=model.endpoint_name,
264-
# )
265-
# if caught_ex:
266-
# logger.exception(caught_ex)
267-
# assert (
268-
# False
269-
# ), f"{caught_ex} was thrown when running pytorch squeezenet sagemaker endpoint test"
270-
271-
272-
# @pytest.mark.skipif(
273-
# NOT_RUNNING_ON_INF_EXP_DEV_PIPELINE or PYTHON_VERSION_IS_NOT_310,
274-
# reason="The goal of these test are to test the serving components of our feature",
275-
# )
276-
# @pytest.mark.parametrize(
277-
# "model_builder", ["model_builder_inference_spec_schema_builder"], indirect=True
278-
# )
279-
# def test_happy_pytorch_sagemaker_endpoint_overwrite_to_local_container(
280-
# sagemaker_session, model_builder, test_image
281-
# ):
282-
# logger.info("Building model in SAGEMAKER_ENDPOINT mode...")
283-
# caught_ex = None
284-
285-
# iam_client = sagemaker_session.boto_session.client("iam")
286-
# role_arn = iam_client.get_role(RoleName=ROLE_NAME)["Role"]["Arn"]
287-
288-
# model = model_builder.build(
289-
# mode=Mode.SAGEMAKER_ENDPOINT, role_arn=role_arn, sagemaker_session=sagemaker_session
290-
# )
291-
292-
# with timeout(minutes=SERVE_LOCAL_CONTAINER_TIMEOUT):
293-
# try:
294-
# logger.info("Deploying and predicting in LOCAL_CONTAINER mode...")
295-
# predictor = model.deploy(mode=Mode.LOCAL_CONTAINER)
296-
# logger.info("Local container successfully deployed.")
297-
# predictor.predict(test_image)
298-
# except Exception as e:
299-
# logger.exception("test failed")
300-
# caught_ex = e
301-
# finally:
302-
# if model.modes[str(Mode.LOCAL_CONTAINER)].container:
303-
# model.modes[str(Mode.LOCAL_CONTAINER)].container.kill()
304-
# if caught_ex:
305-
# assert (
306-
# False
307-
# ), f"{caught_ex} was thrown when running pytorch squeezenet local container test"
226+
@pytest.mark.skipif(
227+
PYTHON_VERSION_IS_NOT_310,
228+
reason="The goal of these test are to test the serving components of our feature",
229+
)
230+
@pytest.mark.parametrize(
231+
"model_builder", ["model_builder_inference_spec_schema_builder"], indirect=True
232+
)
233+
def test_happy_pytorch_local_container_overwrite_to_sagemaker_endpoint(
234+
sagemaker_session, model_builder, cpu_instance_type, test_image
235+
):
236+
logger.info("Building model in LOCAL_CONTAINER mode...")
237+
caught_ex = None
238+
239+
iam_client = sagemaker_session.boto_session.client("iam")
240+
role_arn = iam_client.get_role(RoleName=ROLE_NAME)["Role"]["Arn"]
241+
logger.debug("Role arn: %s", role_arn)
242+
243+
model = model_builder.build(
244+
mode=Mode.LOCAL_CONTAINER, role_arn=role_arn, sagemaker_session=sagemaker_session
245+
)
246+
247+
with timeout(minutes=SERVE_SAGEMAKER_ENDPOINT_TIMEOUT):
248+
try:
249+
logger.info("Deploying and predicting in SAGEMAKER_ENDPOINT mode...")
250+
predictor = model.deploy(
251+
instance_type=cpu_instance_type,
252+
initial_instance_count=1,
253+
mode=Mode.SAGEMAKER_ENDPOINT,
254+
)
255+
logger.info("Endpoint successfully deployed.")
256+
predictor.predict(test_image)
257+
except Exception as e:
258+
caught_ex = e
259+
finally:
260+
cleanup_model_resources(
261+
sagemaker_session=model_builder.sagemaker_session,
262+
model_name=model.name,
263+
endpoint_name=model.endpoint_name,
264+
)
265+
if caught_ex:
266+
logger.exception(caught_ex)
267+
assert (
268+
False
269+
), f"{caught_ex} was thrown when running pytorch squeezenet sagemaker endpoint test"
270+
271+
272+
@pytest.mark.skipif(
273+
PYTHON_VERSION_IS_NOT_310,
274+
reason="The goal of these test are to test the serving components of our feature",
275+
)
276+
@pytest.mark.parametrize(
277+
"model_builder", ["model_builder_inference_spec_schema_builder"], indirect=True
278+
)
279+
def test_happy_pytorch_sagemaker_endpoint_overwrite_to_local_container(
280+
sagemaker_session, model_builder, test_image
281+
):
282+
logger.info("Building model in SAGEMAKER_ENDPOINT mode...")
283+
caught_ex = None
284+
285+
iam_client = sagemaker_session.boto_session.client("iam")
286+
role_arn = iam_client.get_role(RoleName=ROLE_NAME)["Role"]["Arn"]
287+
288+
model = model_builder.build(
289+
mode=Mode.SAGEMAKER_ENDPOINT, role_arn=role_arn, sagemaker_session=sagemaker_session
290+
)
291+
292+
with timeout(minutes=SERVE_LOCAL_CONTAINER_TIMEOUT):
293+
try:
294+
logger.info("Deploying and predicting in LOCAL_CONTAINER mode...")
295+
predictor = model.deploy(mode=Mode.LOCAL_CONTAINER)
296+
logger.info("Local container successfully deployed.")
297+
predictor.predict(test_image)
298+
except Exception as e:
299+
logger.exception("test failed")
300+
caught_ex = e
301+
finally:
302+
if model.modes[str(Mode.LOCAL_CONTAINER)].container:
303+
model.modes[str(Mode.LOCAL_CONTAINER)].container.kill()
304+
if caught_ex:
305+
assert (
306+
False
307+
), f"{caught_ex} was thrown when running pytorch squeezenet local container test"

0 commit comments

Comments
 (0)