Skip to content

Commit e32c156

Browse files
authored
doc: remove some duplicated documentation from main README (#1524)
1 parent 8ebbb71 commit e32c156

File tree

9 files changed

+31
-170
lines changed

9 files changed

+31
-170
lines changed

README.rst

Lines changed: 7 additions & 80 deletions
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@ You can also train and deploy models with **Amazon algorithms**,
3434
which are scalable implementations of core machine learning algorithms that are optimized for SageMaker and GPU training.
3535
If you have **your own algorithms** built into SageMaker compatible Docker containers, you can train and host models using these as well.
3636

37-
For detailed API reference please go to: `Read the Docs <https://sagemaker.readthedocs.io>`_
37+
For detailed documentation, including the API reference, see `Read the Docs <https://sagemaker.readthedocs.io>`_.
3838

3939
Table of Contents
4040
-----------------
@@ -45,11 +45,11 @@ Table of Contents
4545
#. `Using TensorFlow <https://sagemaker.readthedocs.io/en/stable/using_tf.html>`__
4646
#. `Using Chainer <https://sagemaker.readthedocs.io/en/stable/using_chainer.html>`__
4747
#. `Using PyTorch <https://sagemaker.readthedocs.io/en/stable/using_pytorch.html>`__
48-
#. `Scikit-learn SageMaker Estimators <#scikit-learn-sagemaker-estimators>`__
49-
#. `XGBoost SageMaker Estimators <#xgboost-sagemaker-estimators>`__
48+
#. `Using Scikit-learn <https://sagemaker.readthedocs.io/en/stable/using_sklearn.html>`__
49+
#. `Using XGBoost <https://sagemaker.readthedocs.io/en/stable/using_xgboost.html>`__
5050
#. `SageMaker Reinforcement Learning Estimators <https://sagemaker.readthedocs.io/en/stable/using_rl.html>`__
5151
#. `SageMaker SparkML Serving <#sagemaker-sparkml-serving>`__
52-
#. `AWS SageMaker Estimators <#aws-sagemaker-estimators>`__
52+
#. `Amazon SageMaker Built-in Algorithm Estimators <src/sagemaker/amazon/README.rst>`__
5353
#. `Using SageMaker AlgorithmEstimators <https://sagemaker.readthedocs.io/en/stable/overview.html#using-sagemaker-algorithmestimators>`__
5454
#. `Consuming SageMaker Model Packages <https://sagemaker.readthedocs.io/en/stable/overview.html#consuming-sagemaker-model-packages>`__
5555
#. `BYO Docker Containers with SageMaker Estimators <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-docker-containers-with-sagemaker-estimators>`__
@@ -58,9 +58,9 @@ Table of Contents
5858
#. `Secure Training and Inference with VPC <https://sagemaker.readthedocs.io/en/stable/overview.html#secure-training-and-inference-with-vpc>`__
5959
#. `BYO Model <https://sagemaker.readthedocs.io/en/stable/overview.html#byo-model>`__
6060
#. `Inference Pipelines <https://sagemaker.readthedocs.io/en/stable/overview.html#inference-pipelines>`__
61-
#. `Amazon SageMaker Operators for Kubernetes <#amazon-sagemaker-operators-for-kubernetes>`__
62-
#. `Amazon SageMaker Operators in Apache Airflow <#sagemaker-workflow>`__
63-
#. `SageMaker Autopilot <#sagemaker-autopilot>`__
61+
#. `Amazon SageMaker Operators for Kubernetes <https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_operators_for_kubernetes.html>`__
62+
#. `Amazon SageMaker Operators in Apache Airflow <https://sagemaker.readthedocs.io/en/stable/using_workflow.html>`__
63+
#. `SageMaker Autopilot <src/sagemaker/automl/README.rst>`__
6464
#. `Model Monitoring <https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_model_monitoring.html>`__
6565
#. `SageMaker Debugger <https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_debugger.html>`__
6666
#. `SageMaker Processing <https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_processing.html>`__
@@ -197,37 +197,6 @@ Preview the site with a Python web server:
197197

198198
View the website by visiting http://localhost:8000
199199

200-
Scikit-learn SageMaker Estimators
201-
---------------------------------
202-
203-
With Scikit-learn SageMaker Estimators, you can train and host Scikit-learn models on Amazon SageMaker.
204-
205-
Supported versions of Scikit-learn: ``0.20.0``.
206-
207-
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
208-
209-
For more information about Scikit-learn, see https://scikit-learn.org/stable/
210-
211-
For more information about Scikit-learn SageMaker Estimators, see `Using Scikit-learn with the SageMaker Python SDK`_.
212-
213-
.. _Using Scikit-learn with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_sklearn.html
214-
215-
XGBoost SageMaker Estimators
216-
----------------------------
217-
218-
With XGBoost SageMaker Estimators, you can train and host XGBoost models on Amazon SageMaker.
219-
220-
Supported versions of XGBoost: ``0.90-1``.
221-
222-
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
223-
224-
For more information about XGBoost, see https://xgboost.readthedocs.io/en/latest/
225-
226-
For more information about XGBoost SageMaker Estimators, see `Using XGBoost with the SageMaker Python SDK`_.
227-
228-
.. _Using XGBoost with the SageMaker Python SDK: https://sagemaker.readthedocs.io/en/stable/using_xgboost.html
229-
230-
231200
SageMaker SparkML Serving
232201
-------------------------
233202

@@ -260,45 +229,3 @@ For more information about the different ``content-type`` and ``Accept`` formats
260229
``schema`` that SageMaker SparkML Serving recognizes, please see `SageMaker SparkML Serving Container`_.
261230

262231
.. _SageMaker SparkML Serving Container: https://github.com/aws/sagemaker-sparkml-serving-container
263-
264-
AWS SageMaker Estimators
265-
------------------------
266-
Amazon SageMaker provides several built-in machine learning algorithms that you can use to solve a variety of problems.
267-
268-
The full list of algorithms is available at: https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
269-
270-
The SageMaker Python SDK includes estimator wrappers for the AWS K-means, Principal Components Analysis (PCA), Linear Learner, Factorization Machines,
271-
Latent Dirichlet Allocation (LDA), Neural Topic Model (NTM), Random Cut Forest, k-nearest neighbors (k-NN), Object2Vec, and IP Insights algorithms.
272-
273-
For more information, see `AWS SageMaker Estimators and Models`_.
274-
275-
.. _AWS SageMaker Estimators and Models: src/sagemaker/amazon/README.rst
276-
277-
Amazon SageMaker Operators for Kubernetes
278-
-----------------------------------------
279-
280-
You can use Amazon SageMaker Operators for Kubernetes to optimize hyperparameters for a given model, run batch transform jobs over existing models, and set up inference endpoints.
281-
282-
For more information, see `Amazon SageMaker Operators for Kubernetes`_.
283-
284-
.. _Amazon SageMaker Operators for Kubernetes: https://sagemaker.readthedocs.io/en/stable/amazon_sagemaker_operators_for_kubernetes.html
285-
286-
Amazon SageMaker Operators in Apache Airflow
287-
--------------------------------------------
288-
289-
You can use Apache Airflow to author, schedule and monitor SageMaker workflow.
290-
291-
For more information, see `Amazon SageMaker Operators in Apache Airflow`_.
292-
293-
.. _Amazon SageMaker Operators in Apache Airflow: https://sagemaker.readthedocs.io/en/stable/using_workflow.html
294-
295-
SageMaker Autopilot
296-
-------------------
297-
298-
Amazon SageMaker Autopilot is an automated machine learning solution (commonly referred to as "AutoML") for tabular
299-
datasets. It automatically trains and tunes the best machine learning models for classification or regression based
300-
on your data, and hosts a series of models on an Inference Pipeline.
301-
302-
For more information about SageMaker Autopilot, see `SageMaker Autopilot`_.
303-
304-
.. _SageMaker Autopilot: src/sagemaker/automl/README.rst

doc/using_chainer.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ With Chainer Estimators, you can train and host Chainer models on Amazon SageMak
66

77
Supported versions of Chainer: ``4.0.0``, ``4.1.0``, ``5.0.0``.
88

9-
We recommend that you use the latest supported version, because that's where we focus most of our development efforts.
9+
We recommend that you use the latest supported version because that's where we focus most of our development efforts.
1010

1111
For more information about Chainer, see https://github.com/chainer/chainer.
1212

doc/using_mxnet.rst

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,6 @@ Use MXNet with the SageMaker Python SDK
55
With the SageMaker Python SDK, you can train and host MXNet models on Amazon SageMaker.
66

77
For information about supported versions of MXNet, see the `AWS documentation <https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-images.html>`__.
8-
98
We recommend that you use the latest supported version because that's where we focus our development efforts.
109

1110
For general information about using the SageMaker Python SDK, see :ref:`overview:Using the SageMaker Python SDK`.

doc/using_sklearn.rst

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -4,8 +4,10 @@ Using Scikit-learn with the SageMaker Python SDK
44

55
With Scikit-learn Estimators, you can train and host Scikit-learn models on Amazon SageMaker.
66

7-
For information about supported versions of Scikit-learn, see the `Chainer README <https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/sklearn/README.rst>`__.
7+
For information about supported versions of Scikit-learn, see the `AWS documentation <https://docs.aws.amazon.com/sagemaker/latest/dg/sklearn.html>`__.
8+
We recommend that you use the latest supported version because that's where we focus most of our development efforts.
89

10+
You can visit the Scikit-learn repository at https://github.com/scikit-learn/scikit-learn.
911
For general information about using the SageMaker Python SDK, see :ref:`overview:Using the SageMaker Python SDK`.
1012

1113
.. contents::
@@ -594,6 +596,4 @@ The following are optional arguments. When you create a ``SKLearn`` object, you
594596
SageMaker Scikit-learn Docker Containers
595597
****************************************
596598

597-
You can visit the SageMaker Scikit-Learn containers repository here: hhttps://github.com/aws/sagemaker-scikit-learn-container
598-
599-
For information about SageMaker TensorFlow Docker containers and their dependencies, see `SageMaker Scikit-learn Docker Containers <https://github.com/aws/sagemaker-python-sdk/tree/master/src/sagemaker/sklearn#sagemaker-scikit-learn-docker-containers>`_.
599+
You can visit the SageMaker Scikit-Learn containers repository here: https://github.com/aws/sagemaker-scikit-learn-container

doc/using_tf.rst

Lines changed: 5 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -2,9 +2,10 @@
22
Using TensorFlow with the SageMaker Python SDK
33
##############################################
44

5-
TensorFlow SageMaker Estimators allow you to run your own TensorFlow
6-
training algorithms on SageMaker Learner, and to host your own TensorFlow
7-
models on SageMaker Hosting.
5+
With the SageMaker Python SDK, you can train and host TensorFlow models on Amazon SageMaker.
6+
7+
For information about supported versions of TensorFlow, see the `AWS documentation <https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-images.html>`__.
8+
We recommend that you use the latest supported version because that's where we focus our development efforts.
89

910
For general information about using the SageMaker Python SDK, see :ref:`overview:Using the SageMaker Python SDK`.
1011

@@ -20,9 +21,6 @@ For general information about using the SageMaker Python SDK, see :ref:`overview
2021

2122
.. contents::
2223

23-
Supported versions of TensorFlow for Elastic Inference: ``1.11``, ``1.12``, ``1.13``, ``1.14``, ``1.15``, ``2.0``.
24-
25-
2624
*****************************
2725
Train a Model with TensorFlow
2826
*****************************
@@ -40,7 +38,7 @@ To train a TensorFlow model by using the SageMaker Python SDK:
4038
3. |call fit|_
4139

4240
Prepare a Script Mode Training Script
43-
======================================
41+
=====================================
4442

4543
Your TensorFlow training script must be a Python 2.7-, 3.6- or 3.7-compatible source file.
4644

doc/using_xgboost.rst

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -42,9 +42,13 @@ Use the Open Source XGBoost Algorithm
4242

4343
If you want the flexibility and additional features that it provides, use the SageMaker open source XGBoost algorithm.
4444

45+
For which XGBoost versions are supported, see `the AWS documentation <https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html>`_.
46+
We recommend that you use the latest supported version because that's where we focus most of our development efforts.
47+
4548
For a complete example of using the open source XGBoost algorithm, see the sample notebook at
4649
https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/xgboost_abalone/xgboost_abalone_dist_script_mode.ipynb.
4750

51+
For more information about XGBoost, see `the XGBoost documentation <https://xgboost.readthedocs.io/en/latest>`_.
4852

4953
Train a Model with Open Source XGBoost
5054
======================================

src/sagemaker/amazon/README.rst

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,13 +1,13 @@
1-
21
===================================
32
AWS SageMaker Estimators and Models
43
===================================
54

65
Amazon SageMaker provides several built-in machine learning algorithms that you can use for a variety of problem types.
6+
SageMaker Python SDK includes Estimators for many of these algorithms, including K-means, Principal Components Analysis (PCA),
7+
Linear Learner, Factorization Machines, Latent Dirichlet Allocation (LDA), Neural Topic Model (NTM), Random Cut Forest,
8+
k-nearest neighbors (k-NN), Object2Vec, and IP Insights.
79

8-
The full list of algorithms is available on the AWS website: https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
9-
10-
SageMaker Python SDK includes Estimator wrappers for the AWS K-means, Principal Components Analysis(PCA), Linear Learner, Factorization Machines, Latent Dirichlet Allocation(LDA), Neural Topic Model(NTM), Random Cut Forest algorithms, k-nearest neighbors (k-NN), Object2Vec, and IP Insights.
10+
For the full list of algorithms, visit `the AWS documentation <https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html>`_.
1111

1212
Definition and usage
1313
~~~~~~~~~~~~~~~~~~~~

src/sagemaker/sklearn/README.rst

Lines changed: 0 additions & 68 deletions
This file was deleted.

src/sagemaker/xgboost/README.rst

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,11 @@
1-
============================================
1+
=======================================
22
XGBoost SageMaker Estimators and Models
3-
============================================
3+
=======================================
44

55
With XGBoost Estimators, you can train and host XGBoost models on Amazon SageMaker.
66

7-
Supported versions of SageMaker XGBoost: ``0.90-1``
7+
For which XGBoost versions are supported, see `the AWS documentation <https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html>`_.
8+
We recommend that you use the latest supported version because that's where we focus most of our development efforts.
89

910
Note that the first part of the version refers to the upstream module version (aka, 0.90), while the second
1011
part refers to the SageMaker version for the container.
@@ -14,7 +15,7 @@ You can visit the XGBoost repository at https://github.com/dmlc/xgboost
1415
For information about using XGBoost with the SageMaker Python SDK, see https://sagemaker.readthedocs.io/en/stable/using_xgboost.html.
1516

1617
XGBoost Training Examples
17-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
18+
~~~~~~~~~~~~~~~~~~~~~~~~~
1819

1920
Amazon provides an example Jupyter notebook that demonstrate end-to-end training on Amazon SageMaker using XGBoost.
2021
Please refer to:
@@ -25,7 +26,7 @@ These are also available in SageMaker Notebook Instance hosted Jupyter notebooks
2526

2627

2728
SageMaker XGBoost Docker Containers
28-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2930

3031
When training and deploying training scripts, SageMaker runs your Python script in a Docker container with several
3132
libraries installed. When creating the Estimator and calling deploy to create the SageMaker Endpoint, you can control

0 commit comments

Comments
 (0)