You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@@ -2170,8 +2196,8 @@ types support setting defaults with a configuration file.
2170
2196
- Tags
2171
2197
- Enable inter-container traffic encryption
2172
2198
2173
-
List of APIs supported
2174
-
----------------------
2199
+
List of APIs andSDK capabilities supported
2200
+
-------------------------------------------
2175
2201
2176
2202
Default values for the supported parameters of these APIs apply to
2177
2203
all create and update calls for that API. For example, if a supported
@@ -2202,6 +2228,10 @@ configuration file.
2202
2228
Hyperparameter Tuning Job: Supported indirectly via ``TrainingJob``API. While this APIisnot directly supported, it includes the training job definition as a parameter.
2203
2229
If you provide defaults for this parameter as part of the ``TrainingJob``API, these defaults are also used for Hyperparameter Tuning Job.
2204
2230
2231
+
The following goups of SDK capabilities support defaults with a configuration file.
2232
+
2233
+
- Remote Function ``@remote decorator``, ``RemoteExecutor```
2234
+
2205
2235
Configuration file resolution
2206
2236
=============================
2207
2237
@@ -2413,6 +2443,45 @@ specifically the contents of ``'body': b'{...}`` .
You can integrate your local machine language (ML) code to run in a Amazon SageMaker Training job by wrapping
2452
+
your code inside a @remote decorator as shown in the following code example.
2453
+
2454
+
.. code-block:: python
2455
+
2456
+
from sagemaker.remote_function import remote
2457
+
import numpy as np
2458
+
2459
+
@remote(instance_type="ml.m5.large")
2460
+
def matrix_multiply(a, b):
2461
+
return np.matmul(a, b)
2462
+
2463
+
a= np.array([[1, 0],
2464
+
[0, 1]])
2465
+
b= np.array([1, 2])
2466
+
2467
+
assert (matrix_multiply(a, b) == np.array([1,2])).all()
2468
+
2469
+
The SageMaker Python SDK will automatically translate your existing workspace environment andany associated data
2470
+
processing code and datasets into a SageMaker Training job that runs on the SageMaker Training platform.
2471
+
You can also activate a persistent cache feature, which will further reduce job start up latency by caching previously
2472
+
downloaded dependency packages. This reduction in job latency is greater than the reduction in latency from using
2473
+
SageMaker managed warm pools alone. The following sections show you how to wrap your local ML code and tailor your
2474
+
experience for your use case including customizing your environment and integrating with SageMaker Experiments.
2475
+
2476
+
See the `Run your local code as a SageMaker Training job <https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-decorator.html>`__ for detailed developer guide.
2477
+
2478
+
Follow is the API specification for methods and classes related to remote function feature.
0 commit comments