|
| 1 | +from sagemaker.predictor import Predictor |
| 2 | +from sagemaker import Session |
| 3 | +from sagemaker.serializers import BaseSerializer, JSONSerializer |
| 4 | +from sagemaker.deserializers import BaseDeserializer, JSONDeserializer |
| 5 | + |
| 6 | + |
| 7 | +class DJLPredictor(Predictor): |
| 8 | + """A Predictor for inference against DJL Model Endpoints. |
| 9 | +
|
| 10 | + This is able to serialize Python lists, dictionaries, and numpy arrays to |
| 11 | + multidimensional tensors for DJL inference. |
| 12 | + """ |
| 13 | + |
| 14 | + def __init__( |
| 15 | + self, |
| 16 | + endpoint_name: str, |
| 17 | + sagemaker_session: Session = None, |
| 18 | + serializer: BaseSerializer = JSONSerializer(), |
| 19 | + deserializer: BaseDeserializer = JSONDeserializer(), |
| 20 | + component_name=None, |
| 21 | + ): |
| 22 | + """Initialize a ``DJLPredictor`` |
| 23 | +
|
| 24 | + Args: |
| 25 | + endpoint_name (str): The name of the endpoint to perform inference |
| 26 | + on. |
| 27 | + sagemaker_session (sagemaker.session.Session): Session object that |
| 28 | + manages interactions with Amazon SageMaker APIs and any other |
| 29 | + AWS services needed. If not specified, the estimator creates one |
| 30 | + using the default AWS configuration chain. |
| 31 | + serializer (sagemaker.serializers.BaseSerializer): Optional. Default |
| 32 | + serializes input data to json format. |
| 33 | + deserializer (sagemaker.deserializers.BaseDeserializer): Optional. |
| 34 | + Default parses the response from json format to dictionary. |
| 35 | + component_name (str): Optional. Name of the Amazon SageMaker inference |
| 36 | + component corresponding the predictor. |
| 37 | + """ |
| 38 | + super(DJLPredictor, self).__init__( |
| 39 | + endpoint_name, |
| 40 | + sagemaker_session, |
| 41 | + serializer=serializer, |
| 42 | + deserializer=deserializer, |
| 43 | + component_name=component_name, |
| 44 | + ) |
0 commit comments